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Abstract 
Mathematical modeling is used to understand the dynamics of transmission of 
infectious diseases such as COVID-19, SARS, Ebola, and Dengue among populations. 
In this work, a one prey-two predator model has been developed to understand the 
underlying dynamics of COVID-19 disease transmission. We consider the infected, 
recovered, and death classes with the fact that an infected person can be transformed 
into the recovered or death group assuming that the infected ones are the prey, and the 
other two populations are the two predators in the one prey-two predator model. It 
was found that the proposed model has four equilibrium points; the vanishing 
equilibrium point (E_0), recovered and death-free equilibrium point (E_1), infected and 
recovered population-free equilibrium point (E_2), and the death-free equilibrium 
point (E_3). Stability analysis of the equilibrium points shows that all the other 
equilibrium points are locally stable. Global asymptotic stability of the recovered and 
death-free equilibrium point, infected and recovered free and death-free equilibrium 
point are also analyzed. Moreover, the existence and uniqueness of the solutions were 
proved. The parameters for the model are estimated from a data set that consists of the 
total number of infected, recovered, and death classes at a zone for the first 6 months 
of the year 2020 using the Nelder-Mead optimization method. During the first 6 months, 
the infected population increases at a higher rate, the recovered population, and the 
death class increase at a lower rate.  However, some modifications to the system are 
needed. In future work, measures such as health precautions, vaccinations are needed 
to be considered to formulate the mathematical model and estimate parameters. 
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Introduction 
 

Mathematical modeling is used to understand the dynamics and 

behavior of the ecological interactions among the species such as prey 

and predator populations. Lotka and Volterra proposed the simplest 

model, which is known as the Lotka-Volterra model, of prey-predator 

interactions based on linear per capita growth rate [1]. Many fields like 

medicine [2], agriculture [3, 4] management, and social sciences [5] use 

mathematical modeling to model the dynamics of certain systems. 

Mathematical modeling can also be used to understand disease 

transmission among populations. Transmission of infectious diseases 

like COVID-19, SARS, Ebola, and Dengue can be easily understood 

using different mathematical models. In order to forecast disease 

outbreaks, avoid or cure these illnesses different mathematical models 

have been used in the literature [2, 6, 7, 8, 9]. Daniel Bernoulli in 1760 

formulated and solved a model for the spread of smallpox in order to 

evaluate the effectiveness of variolation of healthy people with the 

smallpox virus [6]. In the 1920s, the emergence of compartmental 

diseases was taken place with the great work done by Kermack and 

McKendrick in 1927[7].   

The world’s deadly COVID-19 pandemic occurred in the ancient town 

of Wuhan Hubei Province, China, by the end of December 2019 

spreading worldwide in 2020 and 2021. Initially, several unexplained 

cases of coughs, pneumonia, exhaustion, and fever were there among 

the people in Wuhan, China. The arrival of coronavirus resulted in the 

closure of businesses, schools, markets, traveling restrictions, curfew, 

lockdown, and reduction of gathering. With the arrival of SARS-CoV-2, 

the virus that causes COVID-19, researchers have been formulating 

mathematical models as a technique in getting an idea about the mode 

of transmission of the pandemic, impact of the pandemic, prevention, 

and control of the pandemic, the effect of the preventive measure on the 

pandemic [10,11–17]. Some recent developments of mathematical 

models and analysis are presented in  [10], [16],[18]-[21],[23]-[37]. 
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Traditionally, model validation is done by comparing the data with the 

model either qualitatively as stable or cyclic dynamic behavior, length of 

cycles, amplitudes, etc.… or quantitatively by estimating parameters in 

the field and calibrating the model to obtain a good fit for the data [38]. 

Fitting nonlinear models to time-series is a technique of increasing 

importance in population ecology [38], [39], [40]. In 2001, Jost and Arditi 

[38] applied this technique to assess the importance of predator 

dependence in the predation process by comparing two alternative 

models of equal complexity (one with and one without predator 

dependence) to predator–prey time series. Stochasticity in such data 

comes from both observation error and process error. They considered 

how these errors must be taken into account in the fitting process, and 

they developed eight different model selection criteria. Carpenter, 

Cottingham, and Stow in Ref.[39] fitted nonlinear difference equations 

to time series with observation errors, which were examined by 

stochastic simulation and analysis of plankton time series from two lakes. 

They showed that even modest observation errors cause errors in model 

identification and bias in parameter estimates and the latter problem can 

be corrected by estimation techniques that account for observation error, 

but model identification is difficult unless the state variables are 

manipulated. In Ref.[40], the authors applied model-fitting to test if 

typical ecological predator-prey time series data, which contain both 

observation error and process error, can give some information about 

the form of the functional response.  

In this paper, a one prey-two predator model has been developed in such 

a way that the parameters of the model are found by using a set of 

COVID-19 data, which consists of the total number of infected people, 

recovered people, and dead population. The model is formulated to 

understand the dynamics of the spreading of COVID-19 data. The 

existence and uniqueness of the solutions were discussed and the 

conditions for the local and global asymptotic stability of the equilibrium 

points were established. 
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Materials and Methods 

Model Formulation 

We consider a system consisting of three classes: infected, recovered, and 

dead due to COVID-19. The infected population is developed based on 

the logistic law with carrying capacity 𝐾 ≥ 0 and with the infection rate 

𝑎. This can be happened due to the reasons such as immigration between 

zones and reported new Corona cases.   Moreover, the model is 

formulated assuming that infected ones get converted to both recovered 

and dead classes. Similar to the Lotka-Volterra model formulation, it is 

assumed that the infected and recovered classes, and infected and death 

classes have meetings proportional to the product between the 

corresponding two classes. The recovered population can be increased 

or decreased due to the immigration between zones.  The mathematical 

model as a system of three ordinary differential equations can be written 

as  

 
𝑑𝑥

𝑑𝑡
= 𝑎𝑥 (1 −

𝑥

𝐾
) − 𝑑𝑥𝑦 − 𝑐𝑥𝑧 Equation 1 

 
𝑑𝑦

𝑑𝑡
= 𝑏𝑦 + 𝑑𝑥𝑦 Equation 2 

 
𝑑𝑧

𝑑𝑡
= 𝑐𝑥𝑧, Equation 3 

where 𝑥(0) ≥ 0 , 𝑦(0) ≥ 0, 𝑧(0) ≥ 0. Here 𝑥(𝑡)  is the infected population, 

𝑦(𝑡) is the recovered population, and 𝑧(𝑡) is the dead class at the time 𝑡. 

However, for simplicity, these are represented as 𝑥, 𝑦, and 𝑧 in the text 

of this paper. In the model, the parameters represent the following. 𝑎 

represents the growth rate of the infected population due to the factors 

such as traveling between zones and reported positive Corona cases, 𝐾 

represents the carrying capacity of the infected population, 𝑑 is the cure 

rate, 𝑐  is the rate of transmission from infected to dead class, 𝑏 

represents the rate of decrease or increase of recovered population due 

to the factors such as travelling between zones. The parameters 𝑎 and 𝑏 

can take negative or positive values depending on the situation.  
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Parameter Estimation 

This section illustrates the parameter estimation method used to 

estimate parameters for the model. Let p be the set of parameters of the 

systems of Ordinary Differential Equations. Then, the parameters can be 

obtained by minimizing the mean square error between the model 

output data 𝒚(𝑡𝑗; 𝒑)  and experimental or real data ( 𝑡𝑗,𝒚𝒋) . Thus, the 

objective function that needs to be minimized is  
 

𝑜𝑏𝑗(𝒑) =∑|𝒚(𝑡𝑗; 𝒑) − 𝒚𝒋|
2.

𝑘

𝑗=1

 

 

In this work, the Nelder-Mead method is used to solve the above 

optimization problem [9].  The Nelder-Mead method, which was 

proposed by John Nelder and Roger Mead in 1965, is a numerical 

method that is used to find the minimum or maximum of an objective 

function in a higher-dimensional space. Algorithm 1 illustrates how the 

Nelder-Mead method works to find the optimal solution [10]. 
 

Algorithm 1: Nelder-Mead  

1.Let 𝑥𝑖 denote the list of vertices in the current simplex, 𝑖 = 1, … , 𝑛 + 1. 

2.Order; Order and re-label the 𝑛 + 1 vertices from the lowest function 

value 𝑓(𝑥1)  to the highest function value 𝑓(𝑥𝑛+1)  so that 𝑓(𝑥1) ≤

𝑓(𝑥2) ≤ ⋯ ≤ 𝑓(𝑥𝑛+1). 

3.Reflect; Compute the reflection point 𝑥𝑟 by 

𝑥𝑟 = �̅� + 𝜌(�̅� − 𝑥(𝑛+1)), 

where �̅� is the centroid of the 𝑛 best points, 

�̅� = ∑(
𝑥𝑖
𝑛
) , 𝑖 = 1,… , 𝑛. 

If 𝑓(𝑥1) ≤ 𝑓(𝑥𝑟) < 𝑓(𝑥𝑛) then 

      replace 𝑥𝑛+1 with the reflected point 𝑥𝑟 . 

      go to step 7. 

end if 



Adv. Technol. 2021, 1(1), 25-40 

 

30 
 

4.Expand; 

if 𝑓(𝑥𝑟) < 𝑓(𝑥1) then 

      compute the expansion point 𝑥𝑒 by 𝑥𝑒 = �̅� + 𝜒(𝑥𝑟 − �̅�). 

end if  

if 𝑓(𝑥𝑒) < 𝑓(𝑥𝑟) then 

      replace 𝑥𝑛+1 with 𝑥𝑒 and go to Step 7. 

else 

     replace 𝑥𝑛+1 with 𝑥𝑟 and go to Step 7. 

end if 

5.Constract; 

if 𝑓(𝑥𝑟) ≥ 𝑓(𝑥𝑛) then  

    perform a contraction between �̅� and the better of 𝑥𝑛+1 and 𝑥𝑟 . 

end if   

Outside contract; 

If 𝑓(𝑥𝑛) ≤ 𝑓(𝑥𝑟) < 𝑓(𝑥𝑛+1) then 

     Calculate 𝑥𝑜𝑐 = �̅� + 𝛾(𝑥𝑟 − �̅�). 

     if 𝑓(𝑥𝑜𝑐) ≤ 𝑓(𝑥𝑟) then 

           replace 𝑥𝑛+1 with 𝑥𝑜𝑐 

           go to Step 7. 

     else 

           go to Step 6. 

     end if 

end if 

Inside contract; 

If 𝑓(𝑥𝑟) ≥ 𝑓(𝑥𝑛+1) then 

      Calculate 𝑥𝑖𝑐 = �̅� + 𝛾(𝑥𝑛+1 − �̅�) 

end if 

if 𝑓(𝑥𝑖𝑐) ≥ 𝑓(𝑥𝑛+1) then 

      replace 𝑥𝑛+1 with 𝑥𝑖𝑐 

      go to Step 7. 

else 

      go to Step 6. 

end if 
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6.Shrink; Evaluate the 𝑛 new vertices 

𝑥′ = 𝑥𝑟 + 𝜎(𝑥𝑖 − 𝑥1), 𝑖 = 2,… , 𝑛 + 1. 

Replace the vertices 𝑥2, … , 𝑥+1 with the new vertices 𝑥2
′ , … , 𝑥𝑛+1

′ . 

7.Stopping Condition; Order and re-label the vertices of the new simplex 

as 𝑥1, 𝑥2, … , 𝑥𝑛+1 such that 𝑓(𝑥1) ≤ 𝑓(𝑥2)… ≤ 𝑓(𝑥𝑛+1). 

if 𝑓(𝑥𝑛+1) − 𝑓(𝑥1) < 𝜀 then 

     stop, where 𝜀 > 0 is a small predetermined tolerance. 

else 

go to Step 3. 

end if  

 

Results and Discussion 
 

Population Dynamics 

Existence and Uniqueness of Solutions of the System 

The existence and uniqueness of the system are proved using the 

existence and uniqueness theorem. The system of differential equations 

can be written in the following form and is analyzed by considering the 

continuity of the functions 𝑓, 𝑔 and ℎ, which are the derivatives of 𝑥, 𝑦 

and 𝑧  and the continuity of their partial derivatives with respect to 𝑥 , 

𝑦 and 𝑧 at the given initial conditions. 

 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑦, 𝑧) 

𝑑𝑦

𝑑𝑡
= 𝑔(𝑥, 𝑦, 𝑧) 

𝑑𝑧

𝑑𝑡
= ℎ(𝑥, 𝑦, 𝑧) 

 

Equilibrium Points and Their Existence 

By setting right-hand sides of Equations 1, 2 and 3 to zero, four 

equilibrium points were found. 

 
𝑑𝑥

𝑑𝑡
= 0 gives  𝑎𝑥 (1 −

𝑥

𝐾
) − 𝑑𝑥𝑦 − 𝑐𝑥𝑧 = 0              Equation 4 
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𝑑𝑦

𝑑𝑡
= 0 gives  𝑏𝑦 + 𝑑𝑥𝑦 = 0                Equation 5 

𝑑𝑦

𝑑𝑡
= 0 gives c𝑥𝑧 = 0                 Equation 6 

 

By Equation 5, we can obtain 𝑦 = 0 or 𝑥 = −
𝑏

𝑑
 

By Equation 4, we can obtain 𝑥 = 0 or 𝑎 (1 −
𝑥

𝐾
) − 𝑑𝑦 − 𝑐𝑧 = 0 

By Equation 6, we can obtain 𝑥 = 0 or 𝑧 = 0 

By considering 𝑦 = 0 and 𝑧 = 0 with 𝑥 = 0 one can obtain  (0, 0, 0) as a 

solution. Also, by considering 𝑎 (1 −
𝑥

𝐾
) − 𝑑𝑦 − 𝑐𝑧 = 0  with 𝑧 = 0  and 

𝑦 = 0  we can obtain (𝐾, 0, 0)  as the next solution. Also, by taking 

𝑎 (1 −
𝑥

𝐾
) − 𝑑𝑦 − 𝑐𝑧 = 0 , 𝑦 = 0 and  𝑥 = 0 into account,  

 ( 0, 0,
𝑎

𝑐
 ) can be obtained as the solution. Finally, when 𝑥 = −

𝑏

𝑑
 and 𝑧 =

0, we can obtain  (−
𝑏

𝑑
,
𝑎

𝑑
(1 +

𝑏

𝑑𝐾
) , 0) as a solution. 

 

The four equilibrium points are summarized following. 

1. The vanishing equilibrium point, 𝐸0 = (0,0,0), always exist. 

2. The recovered and death-free equilibrium point, 𝐸1 =

(�̃�, 0,0), where �̃�= K, always exist. 

3. The infected and recovered-free equilibrium point, 𝐸2 =

(0,0, �̂�),where and �̂� =
𝑎

𝑐
, exists provided that 𝑎 > 𝑐. 

4. The death free equilibrium point can be defined as 𝐸3 = (�̆�, �̆�, 0), 

where �̆� = −
𝑏

𝑑
  and �̆� =

𝑎

𝑑
(1 +

𝑏

𝑑𝐾
). Provided that 𝑏 < 𝑑 and  

𝑎

𝑑
(1 +

𝑏

𝑑𝐾
) > 0. 

 

Local Stability Analysis 

The local asymptotic stability of the system of Equations 1, 2 and 3 at 

each equilibrium point is studied by computing the Jacobian matrix and 

finding the eigenvalues evaluated at each equilibrium point. For stability 

of the equilibrium points, the real parts of the eigenvalues of the Jacobian 

matrix evaluated at each equilibrium point must be negative. Thus, the 
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conditions for which each equilibrium point to be locally asymptotically 

stable were found. Jacobian matrix for the system is: 

𝐽(𝑥, 𝑦, 𝑥) = (
𝑎 −

2𝑎𝑥

𝑘
− 𝑑𝑦 − 𝑒𝑧 −𝑑𝑥 −𝑒𝑥

𝑓𝑦 −𝑏 + 𝑓𝑥 0
𝑔𝑧 0 −𝑐 + 𝑔𝑥

)  

Jacobian matrix at each equilibrium point is evaluated and the following 

results were obtained, 

1. E0 is locally asymptotically unstable since 𝑎 > 0 always. 

 

 𝐽(𝐸0) = (
𝑎 0 0
0 −𝑏 0
0 0 −𝑐

)  

 

2. 𝐸1 is locally asymptotically stable if 𝑓𝑘 < 𝑏 and 𝑔𝑘 < 𝑐 

 

 𝐽(𝐸1) = (
−𝑎 −𝑑𝑘 −𝑒𝑘
0 −𝑏 + 𝑓𝑘 0
0 0 −𝑐 + 𝑔𝑘

)  

 

a. Eigenvalues are −𝑎,−𝑏 + 𝑘𝑓 and −𝑐 + 𝑔𝑘 

 

3. E2 is locally asymptotically stable if  
𝑐𝑓

𝑔
< 𝑏  and 𝑔𝑘 < 𝑐  by 

applying Routh’s Criterion. 

 𝐽(𝐸2) =

(

 
 
 
 

−
𝑎𝑐

𝑔𝑘
−
𝑑𝑐

𝑔
−
𝑒𝑐

𝑔

0 −𝑏 +
𝑓𝑐

𝑔
0

𝑔𝑎

𝑒
(1 −

𝑐

𝑔𝑘
) 0 0

)

 
 
 
 

  

4. By applying the Routh’s criterion [12], E3 is locally asymptotically 

stable if 𝑏 < 𝑘𝑓 and 𝑔𝑏 < 𝑐𝑓. 
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Global Stability Analysis 

The global stability behavior of the system of equations at the coexistent 

equilibrium point is investigated using the Lyapunov stability theorem 

[41]. By showing that the time derivative of the selected Lyapunov 

function is negative definite, the global asymptotic stability of the 

equilibrium points 𝐸1, 𝐸2, and 𝐸3 were analyzed. The time derivative of 

the selected Lyapunov function was negative definite under some 

conditions for both the above equilibrium points. The selected Lyapunov 

function is, 

 

𝑉(𝑥, 𝑦, 𝑧) = 𝑃 (𝑥 − 𝑥∗ − 𝑥∗𝑙𝑛 
𝑥

𝑥∗
) + (𝑦 − 𝑦∗ − 𝑦∗𝑙𝑛 

𝑦

𝑦∗
) + 𝑄(𝑧 − 𝑧∗ − 𝑧∗𝑙𝑛 

𝑧

𝑧∗
 )   

 

where P and Q are arbitrary constants. By finding the time derivative of 

V and substituting 𝑃= 1 and 𝑄 = 
1

𝑐
  following  equation is obtained. 

 

𝑑𝑣

𝑑𝑡
=
−𝑎(𝑥 − 𝑥∗)2

𝐾
+ (𝑧 − 𝑧∗)(𝑥(1 − 𝑐) + 𝑐𝑥∗) Equation 7 

 

For equilibrium point 𝐸1, 𝑦∗ = 0 and 𝑧∗ = 0 therefore, 

 

𝑑𝑣

𝑑𝑡
=
−𝑎(𝑥 − 𝑥∗)2

𝐾
+ 𝑧(𝑥(1 − 𝑐) + 𝑐𝑥∗) Equation 8 

 

For equilibrium point 𝐸2, 𝑥∗ = 0 and 𝑦∗ = 0 therefore,  

 

𝑑𝑣

𝑑𝑡
=
−𝑎𝑥2

𝐾
+ (𝑧 − 𝑧∗)𝑥(1 − 𝑐)  Equation 9 

For equilibrium point 𝐸3, 𝑧∗ = 0, therefore, 

 

𝑑𝑣

𝑑𝑡
=
−𝑎𝑥(𝑥 − 𝑥∗)2

𝐾
+ 𝑧(𝑥(1 − 𝑐) + 𝑐𝑥∗) Equation 10 
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Time derivative given by Equation 8 is negative definite if 𝑐𝑥∗ < 𝑥(𝑐 −

1) . Therefore, 𝐸1  is globally asymptotically stable under the above 

condition. The time derivative given by Equation 9 is negative definite if 

one of the following conditions holds. 

 
 

1. 𝑧 < 𝑧∗ and 1 < 𝑐 or 

2. 𝑧 > 𝑧∗ and 1 > 𝑐 
 

Therefore, 𝐸2  is globally asymptotically stable under any one of the 

above two conditions. Time derivative given by Equation 10 is negative 

definite if 𝑐𝑥∗ < 𝑥(𝑐 − 1). Therefore, 𝐸3 is globally asymptotically stable 

under above condition. 
 

Parameter Estimation 

In order to estimate the parameters, the Nelder-Mead method is used 

and data from https://datahub.io/core/covid-19#resource-time-series-19-

covid-combined were used. Here we assumed that the individuals in the 

recovered population do not travel out of the zone. Then, the estimated 

parameters of the model are, 
 

𝑎 = 1,𝐾 = 200000, 𝑏 = 0, 𝑐 = 0.0007, 𝑑 = 0.001 
 

Figures 1, 2, and 3 show the time series evaluation of the infected, 

recovered, and death classes. One can see from the model that if the 

COVID-19 disease exists in society then the infected population is 

growing due to the slow recovery process and the low number of deaths. 

The recovered population also blowing up at a lower rate. It can be 

observed that the death class also increases at a lower rate within the 6 

months period. Note that health precautions and vaccinations were not 

considered in the selected dataset. 

 

https://datahub.io/core/covid-19#resource-time-series-19-covid-combined
https://datahub.io/core/covid-19#resource-time-series-19-covid-combined
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Figure 1.Variation of infected class with time. 

 
Figure 2.Variation of recovered class with time. 

 
Figure 3. Variation of death class with time. 

Conclusion 
 

In this work, we have formulated a mathematical model that can be used 

to analyze the evolution of the Coronavirus. There exist unique solutions 
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for the formulated system of ordinary differential equations. We have 

found four equilibrium points and all four equilibrium points are locally 

stable under some conditions. Global asymptotic stability of the 

recovered and death-free equilibrium point, infected and recovered free 

and death-free equilibrium point are also analyzed. The model 

parameters for the model were estimated using the Nelder-Mead 

optimization method. During the first 6 months, the infected population 

increases at a higher rate, the recovered population, and the death class 

increases at a lower rate. However, some modifications are needed. In 

the future, measures such as health precautions, vaccinations are needed 

to be considered for estimations of parameters in the model.   
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