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ABSTRACT 
 

From the earliest days of history, the requirement for methods of secret communication and protection of 

information had been present. Cryptography is such an important field of science developed to facilitate 

secret communication and safeguard information. Cryptography is based on mathematics. It is an 

application of different disciplines such as Algebra, Number Theory, Graph Theory etc. Private key 

cryptography and Public key cryptography are the two main types of cryptography. Public key cryptosystems 

offer more security and convenience for the users. The main objective of this study is to explore the 

possibilities of further improvement of Elliptic Curve Cryptography (ECC) by studying the mathematical 

aspects behind the “Elliptic curve cryptosystem” which is one of the latest of this kind and develop a 

computer program to generate the cyclic subgroup of a given elliptic curve defined over a finite field ℤ𝑝, 

where p is a prime, which is the major requirement to perform ECC and then use the same to illustrate how 

data security is achieved from this. For an elliptic curve defined over a field, the points on an elliptic curve 

naturally form an abelian group. Elliptic curve arithmetic can be employed to develop a variety of Elliptic 

curve cryptographic schemes such as key exchange, encryption, digital signatures and specific construction 

of a keyed-Hash Message Authentication Code (HMAC) which are illustrated through this study. Moreover 

this study proposes an improvement for the encryption of a message through utilization of a concept in 

“Coding Theory” of Abstract algebra which offers an additional shield for the transmitted message. 
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1. INTRODUCTION 

 

Cryptography is an important field of science 

developed to facilitate secret communication 

and safeguard information. Private key 

cryptography and Public key cryptography can 

be identified as the two major categories of 

cryptography. In Private key cryptography a 

single key is used for both encryption and 

decryption of messages which renders the 

inconvenience of having to agree on a common 

key by the communicating parties prior to the 

communication. Thus in order to overcome this 

inconvenience Public key cryptosystems were 

introduced which involves a pair of keys, 

namely the Private key and the Public key. The 

concept behind Public key cryptography is as 

follows. 

 

The two communicating parties, say Alice and 

Bob, first have to generate each a pair of keys, 

the Private key and the Public key. The Public 

key of each of them is made public and the 

Private keys are kept as a secret. Then if Alice 

needs to send Bob a message she should encrypt 

it using Bob’s Public key which can only be 

decrypted using Bob’s Private key and vice 

versa. 

 

Elliptic curve cryptosystem is the latest Public 

key cryptosystem of attraction for many 

mathematicians and computer specialists at 

present. The security offered by Elliptic curve 

cryptosystems prove to be unbreakable rather 

than the security offered by RSA cryptosystem 

(which was introduced prior to the ECC) and 

moreover it allows the usage of smaller key 

sizes while offering the same level of security 

as RSA which can be considered as its main 

attraction. 

 

This study was conducted with the intension of 

meeting the following objectives: 

 

 Study of mathematical aspects behind 

Elliptic Curve Cryptography. 

 

 Deriving a cyclic subgroup, which is the 

major requirement to perform Elliptic 

Curve Cryptography from a given elliptic 

curve on a finite field ℤ𝑝, where p is a 

prime and developing a computer program 

as well. 

 

 Development of a computer program to 

illustrate how security is achieved and 

implemented in Elliptic Curve 

Cryptography and make possible 

improvements to the security of Elliptic 

Curve Cryptography. 

 

2. BACKGROUND 

 

Elliptic curve cryptography is based on elliptic 

curves defined over a field. An elliptic curve is 

a curve given by an equation of the form, 

 

𝑦2 =  𝑥3 +  𝑎𝑥 + 𝑏 

with the requirement that the discriminent is 

non-zero. 

𝑖. 𝑒.      ∆ = 4𝑎3 +  27𝑏2  ≠ 0 
 

The above form of the equation is known as the 

Weierstrass normal form for elliptic curves. An 

elliptic curve is non-singular, meaning that its 

graph has no cusps or self intersections and it is 

always symmetric about the x-axis. 

 

Elliptic curves can have points with coordinates 

in any field such as ℤp, ℚ, ℝ or ℂ and for the 

purpose of cryptography the set E(K) of the 

points on an elliptic curve defined over a field 

K together with a point O  which is defined to 

be the point at infinity is considered. 

E(𝐊) = {(x, y): 𝑦2 =  𝑥3 +  𝑎𝑥 + 𝑏  } ∪ {𝑶} 

The points on an elliptic curve naturally form an 

abelian group and the group law can be 

constructed geometrically. To perform 

cryptography it is necessary to obtain a cyclic 

subgroup of this abelian group. 
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2.1. Geometry of Elliptic Curves 

Consider E(𝐊) = {(x, y): 𝑦2 =  𝑥3 +  𝑎𝑥 +
𝑏  (modp)} ∪ {𝑶}, the set of points on the 

elliptic curve 𝑦2 =  𝑥3 +  𝑎𝑥 + 𝑏  over  ℤ𝑝. 

 Adding distinct points on an elliptic curve: 

Let P ≡ (xP, yP) , Q ≡ (xQ, yQ)  be two distinct 

points on the elliptic curve, 

      R ≡ (xR, yR) be the point representing P+Q, 

     S be the slope of the line L(x) through P and 

Q. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Addition of two distinct points on the 

elliptic curve 

 

The sum of the two points P and Q on the 

elliptic curve is defined to be the reflection of 

the point of intersection (R’) of the elliptic 

curve and the line L(x) through P and Q, on the 

x-axis. The coordinates of the point R can be 

obtained using the following formulae given 

any two distinct points P and Q on the elliptic 

curve. 

S =
(yP − yQ)

(xP − xQ)
 (modp) 

xR = S2 − (xP + xQ)    (modp)   

yR = S(xP − xR) − yP  (modp)   
 

A remarkable property for elliptic curves is that 

when the elliptic curve is defined over a field K 

with a, b ∈ K and if P, Q have coordinates in K 

then P+Q, 2P (or 2Q) also have their 

coordinates in K. 

 Adding a point to itself on an elliptic curve: 

Let P ≡ (xP, yP) be a point on the elliptic curve, 

      R ≡ (xR, yR) be the point representing 2P, 

     S be the slope of the line L(x) tangent to the 

curve at P. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Addition a point to itself 

 

The resultant of the addition of a point to itself 

(or point doubling) is defined to be the point on 

the elliptic curve obtained as the reflection of 

the point of intersection of the tangent line L(x) 

with the curve, on the x-axis. The coordinates of 

the point R can be obtained using the following 

formulae, 

 

S =
(3xP

2 +  a)

2yP
 (modp) 

xR = S2 − 2xP  (modp) 

yR = S(xP − xR) − yP  (modp)   
 

 Vertical lines and the extra “point at 

infinity”: 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Point at infinity 
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A vertical line through any point P on the 

elliptic curve intersects the curve at another 

point, say Q. Then Q is defined to be –P. 

In the view of the above defined geometry for 

the addition of two points on an elliptic curve 

we expect the line through the points P and –P 

to intersect the elliptic curve at another point 

enabling to obtain the value P+(-P) but it 

doesn’t make such an intersection.  

Thus an extra point is created; 𝑶  “the point at 

infinity” and is defined to be the sum P + (-P). 

Important rule: O is a point on every vertical 

line. 

2.2. Algebra of Elliptic Curves 

 

Following the definitions for geometry of 

elliptic curves the addition law on the set, 

 

E(𝐊) = {(x, y): 𝑦2 =  𝑥3 +  𝑎𝑥 + 𝑏  (modp)}
∪ {𝑶} 

 

satisfy the following properties, 

 
a) P + 𝑶 =  𝑶 + P = P                    ∀P ∈  E(𝐊) 

b) P + (−P) =  𝑶                              ∀P ∈  E(𝐊) 

c) P + (Q + R) = (P + Q) + R       ∀P, Q, R ∈  E(𝐊) 

d) P + Q =  Q + P                              ∀P, Q ∈  E(𝐊) 

making (E(K),+) in to an abelian group. 

All the Public-key cryptosystems are based on 

some mathematical problem that is easy to solve 

but hard to reverse. Likewise Elliptic curve 

cryptosystem is also based on a mathematical 

problem which is difficult to be solved in the 

reverse direction, known as “Elliptic Curve 

Discrete Logarithm Problem (ECDLP)”. 

2.3.  Discrete Logarithm Problem (DLP) 

 

Let 𝐺 be a group and 𝑔 ∈ 𝐺. The Discrete 

Logarithm Problem for 𝐺 is, 

Finding an integer m, given an element h in the 

subgroup generated by 𝑔, which satisfies,  ℎ =
 𝑔𝑚. 

The DLP is considered to be computationally 

intractable. Generally, no efficient algorithm 

exists which can compute the Discrete 

Logarithms. But there are certain groups for 

which DLP can be solved very easily. ℤ/𝑚ℤ  

under addition and ℝ or ℂ under multiplication 

are some such groups. 

For the group ℤ𝑝 under multiplication, solving 

DLP is considered to be very difficult. The best 

known algorithm to solve DLP in ℤ𝑝 under 

multiplication takes time 

𝑂(𝑒𝑐 √(𝑙𝑜𝑔 𝑝)(𝑙𝑜𝑔 𝑙𝑜𝑔 𝑝)23

). This is called 

subexponential, since it is faster than 

exponential (in 𝑙𝑜𝑔 𝑝) and slower than 

polynomial. For cryptographic purposes it is 

recommended to use a group 𝐺 for which 

solving DLP takes time exponential in the order 

of 𝐺. 

The Discrete Logarithm problem for points on 

an elliptic curve is the ECDLP. 

2.4.  Selection of a suitable generator 

point to generate a cyclic subgroup 

 

For the implementation of Elliptic curve 

cryptosystem, it is necessary to generate a 

cyclic subgroup of the group of points on the 

elliptic curve. Higher the order of the cyclic 

subgroup generated, higher will be the security 

offered by the system. To choose a suitable 

generator point to generate the cyclic subgroup, 

it is appropriate to utilize the following 

algorithm. 

1. Calculate the order N of the elliptic curve. 

2. Out of the divisors of N, choose the largest 

prime divisor as n. Then n will be the order 

of the cyclic subgroup to be generated. 

3. Compute ℎ =  
𝑁

𝑛
. 
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(According to the Lagrange’s theorem, h is 

always an integer. h is known as the Cofactor of 

the subgroup). 

4. Select a random point P on the elliptic 

curve. 

5. Compute 𝐺 = hP. 

6. If 𝐺 = 𝑶, go back to step 4. Otherwise, 𝐺 is 

the suitable generator point of the cyclic 

subgroup. 

The above algorithm works only if n is a prime, 

since if n was not a prime, the order of 𝐺 could 

be one of the divisors of n. 

 

The following parameters are the specific 

domain parameters required to function any 

algorithm under ECC. 

 The prime p that specifies the size of the 

finite field. 

 The coefficients a and b of the elliptic curve 

equation. 

 The base point 𝑮 which generates the cyclic 

subgroup. 

 The order n of the subgroup. 

 The cofactor h of the subgroup. 

In the Elliptic curve cryptosystem,  

1. The private key is a random integer d 

chosen from {1, 2,…, n-1}. 

2. The public key is the point H = dG. 

If d and 𝐺 are known (along with the other 

domain parameters), computing H is “easy”. 

But if only H and 𝐺 are known, finding the 

private key, d is “hard” because it requires 

solving of the ECDLP. 

2.5.  Elliptic Curve Diffie – Hellman 

(ECDH) protocol 

 

Under ECC the key exchange required for user 

authentication can be accomplished through 

Elliptic Curve Diffie – Hellman key agreement 

protocol. It is actually a variant of the Diffie - 

Hellman algorithm for elliptic curves. Through 

key exchange a shared secret key can be 

generated for each communicating party and it 

not only establishes a successful user 

authentication but also the x-coordinate of the 

shared secret key can be used for encryption of 

the message.  

 

The process taking place in ECDH protocol is 

as follows. 

1. First, the two communicating parties, 

say Alice and Bob, have to generate each a pair 

of keys, the private key and the public key (Let 

dA, HA = dAG be the private and public keys of 

Alice and dB, HB = dBG be the private and 

public keys of Bob respectively). 

Both Alice and Bob are using the same domain 

parameters: the same base point G on the same 

elliptic curve defined over  the same finite field. 

2. Then Alice and Bob should exchange 

their public keys HA and HB (may be over an 

insecure channel). An interrupter can intercept 

these keys but he is unable to find the private 

keys, dA nor dB without solving the discrete 

logarithm problem which is “hard”. 

3. Alice calculates S = dA HB (using her 

own private key and Bob's public key), and Bob 

calculates S = dB HA (using his own private key 

and Alice's public key). S is the shared secret 

and is same for both Alice and Bob. 

  
𝑆 =  𝑑𝐴𝐻𝐵 =  𝑑𝐴(𝑑𝐵𝐺) =  𝑑𝐵(𝑑𝐴𝐺) =  𝑑𝐵𝐻𝐴 = 𝑆 

Generation of the same shared secret by both 

the parties indicates successful user 

authentication. Successful authentication then 

allows a communication process to take place 

between the respective parties. 

The required message to be communicated can 

be encrypted using a suitable encryption 

technique. In this study as an attempt to 

improve the security of an encrypted message a 
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concept of a “Double Encryption” was 

introduced. There as the initial encryption 

Advanced Encryption Standards (AES) 

encryption was performed and as the secondary 

encryption the result of AES encryption was 

subjected to an encryption based on the concept 

of (m, 3m) – Repetition code found in Abstract 

algebra. 

2.6. Advanced Encryption Standards (AES) 

AES is implemented using binary arithmetic 

and consists of a precise mathematical 

description. It executes a certain number of 

repeated steps or rounds which is dependent 

upon the size of the initial key. The AES 

encryption process is designed to use initial key 

words of lengths 128, 192 or 256 bits stored one 

byte at a time as the columns in an initial key 

matrix with four rows. For simplicity the initial 

key was fixed to be a key of 128 bits (16 letters) 

in this study.  

 

When using AES, information is transmitted in 

binary form. Eight binary digits together form a 

unit called a byte, which will represent a single 

character in this study. For clear implementation 

using MATLAB R2013a and simplicity, in this 

study it was assumed that all the messages were 

written using only the upper case characters of 

the English alphabet. Under AES each character 

was associated with its corresponding element 

in the ring 𝑅 =  ℤ26 under a bijection defined as 

𝛼 ∶ 𝐿 → 𝑅, where 𝐿 = { 𝐴, 𝐵, … , 𝑍}. (i. e 𝐴 ⟼
 0̅, 𝐵 ⟼  1̅,…, 𝑍 ⟼  25̅̅̅̅  ). However, in order to 

use bytes to represent each of these characters 

the bijection 𝛼 has to be extended as described 

in the following example. 

 

As an example when the letter G is considered, 

it gets mapped to 6̅ under 𝛼. Since 6 can be 

written as 

 

6 = 0 ∙ 27 + 0 ∙ 26 + 0 ∙ 25 + 0 ∙ 24 + 0 ∙ 23 +
1 ∙ 22 + 1 ∙ 21 + 0 ∙ 20, 

as a byte G can be represented as 00000110. 

Furthermore, since this byte can be represented 

as  

0 ∙ 𝑥7 + 0 ∙ 𝑥6 + 0 ∙ 𝑥5 + 0 ∙ 𝑥4 + 0 ∙ 𝑥3 + 1 ∙
𝑥2 + 1 ∙ 𝑥1 + 0 ∙ 𝑥0 = 𝑥2 + 𝑥 , 

 

as a polynomial G can be represented as 𝑥2 + 𝑥. 

 

Likewise all the elements in L can be 

represented as polynomial representations as 

shown below. 

 
Letter Polynomial 

representation 

Letter Polynomial 

representation 
A 0 N 𝑥3 + 𝑥2 + 1 

B 1 O 𝑥3 + 𝑥2 + 𝑥 

C 𝑥 P 𝑥3 + 𝑥2 + 𝑥 + 1 

D 𝑥 + 1 Q 𝑥4 

E 𝑥2 R 𝑥4 + 1 

F 𝑥2 + 1 S 𝑥4 + 𝑥 

G 𝑥2 + 𝑥 T 𝑥4 + 𝑥 + 1 

H 𝑥2 + 𝑥 + 1 U 𝑥4 + 𝑥2 

I 𝑥3 V 𝑥4 + 𝑥2 + 1 

J 𝑥3 + 1 W 𝑥4 + 𝑥2 + 𝑥 

K 𝑥3 + 𝑥 X 𝑥4 + 𝑥2 + 𝑥 + 1 

L 𝑥3 + 𝑥 + 1 Y 𝑥4 + 𝑥3 

M 𝑥3 + 𝑥2 Z 𝑥4 + 𝑥3 + 1 

 

The total number of bytes that are possible is 

28 = 256. Operations of AES algorithm are 

performed on bytes. Specific bytes are 

represented by elements in the finite field 𝐹 =

 
ℤ2[𝑥]

(𝑝(𝑥))⁄ , of order 8 where 𝑝(𝑥) is an 

irreducible polynomial of degree 8 over ℤ2. In 

this study the choice of 𝑝(𝑥) taken is  𝑝(𝑥) =
 𝑥8 + 𝑥4 + 𝑥3 + 𝑥 + 1.  

 

When encrypting a message using AES 

algorithm initially each character of the 

plaintext message has to be stored by using its 

polynomial representation in a matrix, which 

will be considered as the plaintext matrix of the 

message. 

 

A table named “S-box” is used in the AES 

algorithm to transform a given element in                  

𝐹 =  
ℤ2[𝑥]

(𝑝(𝑥))⁄ , in to another unique 

element in F. 
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Table 1. AES S-box 

 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 99 124 119 123 242 107 111 197 48 1 103 43 254 215 171 118 

1 202 130 201 125 250 89 71 240 173 212 162 175 156 164 114 192 

2 183 253 147 38 54 63 247 204 52 165 229 241 113 216 49 21 

3 4 199 35 195 24 150 5 154 7 18 128 226 235 39 178 117 

4 9 131 44 26 27 110 90 160 82 59 214 179 41 227 47 132 

5 83 209 0 237 32 252 177 91 106 203 190 57 74 76 88 207 

6 208 239 170 251 67 77 51 133 69 249 2 127 80 60 159 168 

7 81 163 64 143 146 157 56 245 188 182 218 33 16 255 243 210 

8 205 12 19 236 95 151 68 23 196 167 126 61 100 93 25 115 

9 96 129 79 220 34 42 144 136 70 238 184 20 222 94 11 219 

10 224 50 58 10 73 6 36 92 194 211 172 98 145 149 228 121 

11 231 200 55 109 141 213 78 169 108 86 244 234 101 122 174 8 

12 186 120 37 46 28 166 180 198 232 221 116 31 75 189 139 138 

13 112 62 181 102 72 3 246 14 97 53 87 185 134 193 29 158 

14 225 248 152 17 105 217 142 148 155 30 135 233 206 85 40 223 

15 140 161 137 13 191 230 66 104 65 153 45 15 176 84 187 22 

 

 

The procedure of applying S-box transformation 

is expressed through the following example: 

Consider the polynomial 𝑥4 + 𝑥2 + 𝑥. It has the 

representation of the byte 00010110. The first 

and last four bits of this byte can be viewed as 

the binary expression of an integer between 0 

and 15. In this procedure these integers indicate 

a specific row and a column of the Table 1. The 

first four bits, 0001 is the binary equivalent of 

the integer 1 and the last four bits, 0110 is the 

equivalent of 6. Therefore the value in 1st row 

6th column of the Table 2.6.1 has to be selected, 

which is 71 and its binary equivalent is 

computed which is 01000111. The 

corresponding polynomial of this result is 𝑥6 +
𝑥2 + 𝑥 + 1. Hence for the input 𝑥4 + 𝑥2 + 𝑥, 

the output of the S-box transformation is the 

polynomial  𝑥6 + 𝑥2 + 𝑥 + 1. 

 

The S-box transformation can be inverted by 

using another table similar to Table 2.6.1 or by 

reversing the steps of S-box transformation. 

AES encryption process include four layers 

namely ByteSub (BS), ShiftRow (SR), 

MixColumn (MC), AddRoundKey (ARK) and the 

AES decryption process include the layers 

InvByteSub (IBS), InvShiftRow (ISR), 

MixColumn (MC), AddRoundKey (ARK) which 

are the inverses of the AES encryption layers. 

 

2.7. Keyed – Hash Message Authentication 

Code (HMAC) 

A Keyed – Hash Message Authentication Code 

(HMAC) is a specific construction for 

computing a Message Authentication Code 

(MAC) which involves a cryptographic hash 

function in combination with a secret 

cryptographic key (Figure 4). As with any MAC 

it can be used to verify the data integrity and 

authentication of a message, simultaneously. 

Hash functions such as MD-5, SHA-1, SHA-

256 etc. can be used to generate HMAC. In this 

study the secret cryptographic key was chosen 

to be the x-coordinate of the shared secret 

resulting from ECDH key exchange and hash 

function was chosen to be SHA-256. The result 

of HMAC can be identified as a signature of the 

sender of a message.  
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Figure 4. Process of a MAC 

 

2.8. (m, 3m) - Repetition Code 

 

Repetition code is one of the simplest error 

correcting codes found in Algebraic coding 

theory. The theoretical idea behind Repetition 

codes is to repeat the message several times 

when it is being transmitted over a noisy 

channel. For (m, 3m)-Repetition code, the 

encoding function can be defined as, 

 

𝐸 ∶  𝐵𝑚  →  𝐵3𝑚  
 

𝐸 (𝑎1, 𝑎2, … , 𝑎𝑚)
= (𝑎1, 𝑎2, … , 𝑎𝑚, 𝑎1, 𝑎2, … , 𝑎𝑚, 𝑎1, 𝑎2, … , 𝑎𝑚) 

 

Let 𝑥, 𝑦, 𝑧 ∈  𝐵𝑚. Then xyz denotes the word 

𝑤 ∈  𝐵3𝑚 such that the first m letters of w are 

those of x, next m letters of w are those of y and 

the last m letters of w are those of z. Then the 

decoding function D, can be defined as follows: 

 

𝐷 ∶  𝐵3𝑚  →  𝐵𝑚  
 

The ith digit of D(w), 𝑤 ∈  𝐵3𝑚, is the member 

that appears as the ith digit in at least two of the 

words, x, y, z where 𝑥, 𝑦, 𝑧 ∈  𝐵𝑚 and w = xyz. 

When constructing the codeword w, actually the 

encrypted word (say 𝑥 ∈  𝐵𝑚) is repeated thrice 

as w = xxx which can be denoted as w = xyz in 

general. The (m, 3m) - Repetition code principle 

can be extended to any r number of repetitions 

as (m, rm) - Repetition codes. In  (m, 3m) - 

Repetition code, since the decoding is done by 

selecting the digit which occurs at least at two 

positions in each x, y, z blocks for each position, 

it is possible to detect two errors if present. But 

it can correct only single errors. 

 

3. MATERIALS & METHODS 

 

Since a cyclic subgroup of the abelian group of 

points on an elliptic curve is required to perform 

cryptography, initially a program together with 

a graphical user interface (GUI) was developed 

using MATLAB R2013a to illustrate the 

generation of cyclic subgroups, given any 

suitable elliptic curve defined over  ℤ𝑝. The 

GUI was designed in a manner allowing the 

user to input the parameters a, b, p of any 

elliptic curve 𝑦2 =  𝑥3 +  𝑎𝑥 + 𝑏  (𝑚𝑜𝑑𝑝), 

defined over ℤ𝑝, where p is a prime. For it to be 

an elliptic curve appropriate to be used for 

cryptographic purposes it should satisfy the 

conditions: 

 

 The discriminent is non zero. 

𝑖. 𝑒.      ∆ = 4𝑎3 +  27𝑏2  ≠ 0. 

 p is a prime. 

Thus the program was developed to check the 

above two conditions initially within it and 

display an error message dialog box at a 

violation of any of the conditions. Thereafter in 

order to illustrate how security is achieved and 

implemented in ECC another program was 

written using MATLAB R2013a. There, to 

make the communication procedures clear for 

the scholars in the program Alice was selected 

as a sender of messages and Bob and Jane as 

receivers as chosen by Alice. After choosing an 

elliptic curve to perform the communication 

Alice can enter a message in the GUI designed, 

which will be subjected to an initial encryption 

known as the Advanced Encryption Standards 

(AES) and a secondary encryption based on the 

(m, 3m)-repetition code principles described in 

Algebraic coding theory in Abstract algebra. 

The secondary encryption is a novel concept 

introduced through this study as an 

improvement to the security offered by ECC.  

 

This program included, 
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 Generation of a cyclic subgroup initially 

within it, given a suitable elliptic curve 

defined over  ℤ𝑝 chosen to perform a 

communication between two parties, 

 User authentication between the two 

communicating parties due to a key 

exchange developed through the concept of 

Elliptic curve Diffie Hellman (ECDH)  key 

agreement scheme , 

 Encryption and decryption of messages, 

 Signature generation and verification by 

using keyed-Hash Message Authentication 

Code (HMAC). 

 

A third GUI was designed to illustrate and 

implement the decryption of the received 

message by Bob or Jane, receival of Alice’s 

HMAC signature and signature verification. At 

the receival of Alice’s message in order to 

establish a successful user authentication the 

concept of ECDH was employed. A fourth GUI 

was developed to illustrate the additional 

security and advantage offered by the secondary 

encryption performed, if the message was 

intercepted and corrupted by a third party. Here 

it was assumed that there exists software 

technologies to identify the locations touched 

by a corruption source in the encrypted code 

and thereby the program was designed to 

identify the number of corruptions. It was also 

developed to rectify the corrupted message 

based on the locations of corruption and the 

number of corruptions present, utilizing the 

concepts in coding theory. 

 

 

4. RESULTS & DISCUSSION 

 

4.1. Results and Discussions related to 

Generation of Cyclic subgroups 

 

Accomplishing the second objective of the 

study, a result of cyclic subgroups was obtained 

provided a suitable elliptic curve over ℤ𝑝, 

where p is a prime. This result is intended to be 

highly advantageous for the analysis purposes 

of any scholar. It was observed that based on 

the generator of the cyclic subgroup chosen the 

cyclic subgroup generated varied. 

 

Figure 5. GUI for the generation of cyclic 

subgroups 

 

Figure 6. GUI for the generation of cyclic 

subgroups displaying error message for the 

violation of the necessary condition for the 

discriminant 

 

Figure 7. GUI for the generation of cyclic 

subgroups displaying error message for the 

violation of the requirement that p is a prime 
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4.2. Results and Discussion related to the 

Illustration of a Communication procedure 

under ECC 

 

Figure 8. GUI illustrating communication using 

ECC-Sender 

 

When illustrating the communication process 

using ECC, the program was designed to 

generate a cyclic subgroup based on the elliptic 

curve chosen to perform the communication. 

This also result in the two error messages 

created in the program for generation of cyclic 

subgroups, at the violation of any of the 

conditions necessary for a chosen elliptic curve 

to be a valid elliptic curve.  

 

The interface allows the users to view the AES 

encryption and Secondary encryption of any 

given message as depicted in Figure 8. The 

program is designed to generate and store a 

HMAC signature for each message of the 

sender to be sent along with the message. To 

send the message the sender (Alice) can select 

among two receivers; Bob and Jane and at the 

selection made by Alice the user will be 

directed to a new GUI as shown in Figure 9. 

 

The receiver chosen by Alice (i. e either Bob or 

Jane) is designed to receive a notification 

indicating the receival of the new message and 

also the state of user authentication; whether it 

is Successful or Unsuccessful. Moreover the 

ability to view Alice’s HMAC signature and 

verification is also provided.  

 

To illustrate the situation created if an 

interrupter (known as Eve in this program) 

interrupt and corrupt the message sent by Alice, 

two new separate GUI’s were designed for Bob 

and Jane. At the click of the button “View Eve” 

in the respective receiver either GUI as shown 

in Figure 10 or Figure 11 will be opened. 

 

The GUI’s illustrating the communication 

interruption procedure clearly depicted the 

additional security and advantage offered by the 

secondary encryption performed. Due to the 

assumption that there exists software 

technologies that have the ability to detect 

locations touched by the corruption source it 

was possible to identify whether the message 

can be rectified or not through this program 

which is not possible according to the general 

theoretical concept of (m, 3m) – Repetition 

code.  

 

According to the general definition for the (m, 

3m) – Repetition code, if the same error occurs 

on two x’s of a code word present as w = xxx, it 

will be decoded as a correct code since the same 

digits will appear in at least two locations of the 

repetitions which will result in an erroneous 

message. But according to the assumption made 

it is possible to identify that two x’s are touched 

and corrupted and if two of the x’s are corrupted 

a notification will be displayed to the user 

implying that it is “not possible to rectify the 

errors”.  

 

On the other hand, for each section of the code 

word present in the form w = xxx, it was 

possible to correct any number of corruptions 

made to a single x. The number of corruptions 

present and the fact that it is possible to rectify 

the errors will be displayed to the user which is 

also offering additional convenience than the 

general (m, 3m) – Repetition code. 
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                     Figure 9. GUI illustrating communication using ECC-Receiver 

 

 

 

 

 

 

 

 

 

 

                      Figure 10. GUI illustrating communication interruption-Bob 

 

 

 

 

 

 

 

 

 

 

                      Figure 11. GUI illustrating communication interruption-Jane 
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5. CONCLUSIONS 

Elliptic curve cryptography is the more 

advantageous cryptosystem at present with 

smaller key sizes and higher level of security. 

 

It was evident that the basic requirements for a 

successful cryptosystem namely, 

confidentiality, data intergrity, user 

authentication and non-repudiation are actually 

met by ECC. 

 

ECC is an aggregate of various disciplines such 

as algebra, number theory, computer science 

etc. 

 

In order to improve the security offered by ECC 

it is possible to make use of mathematical 

concepts of algebra. 
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