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Abstract

In this paper, we consider the problem of estimating the median of a gamma
distribution. We introduce a new point estimator based on an approximation
that we derive for the median of a gamma distribution. We compare the new
estimator with two conventional estimators, namely the sample median and
the maximum likelihood estimator (mle). Comparison is based on the amount
of computations required to calculate the estimates and the root mean square
errors ofthe estimators. The new estimator is shown to be 'optimum' with
respect to these two criteria.
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1. Introduction

Estimation of population 'average' or 'central tendency' is a common inferential
problem. Population mean and population median are the commonly used
parameters to represent the population average. Most researchers consider
mean to represent the average because the inference concerning the mean is
easy. Sample mean is an unbiased estimator for the population mean. The
central limit theorem can be used to derive confidence intervals and to test
hypotheses when large samples are available.

However, when the underlying distribution is skewed, the population mean
tends to be larger (when positively skewed) or smaller (when negatively
skewed) than the typical population 'average'. For example, consider the
monthly income of households in a fixed area. The monthly incomes of most
of the households are small to moderately large. There may be few households
with very large monthly incomes. Then the distribution of household incomes
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is positively skewed and the population mean can be significantly larger than
the typical 'average' monthly household income. In such situations, the
population median is better than the population mean to represent the population
'average' .

When the population median is selected to represent the population average,
the next problem is how to make inference regarding the population median.
The parametric approach is to select a suitable model for the distribution of
the variable of interest and make inference regarding the median of the selected
model distribution. The gamma distribution is often used as a model for positively
skewed distributions. Literature related to inference concerning the mean of a
gamma distribution can be found inAnita S. et.a\. (2002) and references therein.
However, we could not find any literature related to the inference concerning
the median of a gamma distribution. In this paper we consider the problem of
estimating the median of a gamma distribution. We intend to present a way to
construct confidence intervals for the median of a gamma distribution, in another
paper.

2. An Approximation for the Median of Gamma Distribution

If a random variable X has a gamma distribution with shape parameter

a (>0) and scale parameter fJ (>0), it is denoted as X ~ G(a, fJ) (Anita S.
eLal.,2002). Its density function is given by

-x//3 a-I

f X (X; a ,P ) = ~ (a ;P a , X > 0,a :> 0, s-. 0 .

(1)

Using simple calculus, it is easy see that

lim!, (x;a,,B) = {=f31
x ...•o

o

a < 1
a =1
a> 1

(2)

Figure 1 shows the three different shapes arising from the above three cases.
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Figure 1: Densities ofG(0.5,2), G(1,2) and G(2,2)

For the above distribution, mean (J.L) = afJ , standard deviation «J) = ra fJ '

2
and skewness = ra (Anita S. et.al.,2002). The skewness depends only

on the shape parameter. As a increases, skewness decreases, and
consequently the gamma distribution approaches a normal distribution when
a is large (e.g., a> 10) (Anita S. et.a\., 2002).

Let v be the median of the above gamma distribution. According to the
definition, v satisfies the equation
I'

ffT (x;a,,o)dx = 0.5.
o

(3)

It is not possible to write v in terms of a and ~ explicitly (http://en.wikipedia.org/
wiki/Gamma_distribution). However, the value of v for given values of a
and ~ can be obtained using the 'INVCDF' function in the statistical package
Minitab or 'qgamma' function in the statistical package R (http://www.r-
project.org/),

Here we derive an approximation for v using two interesting features that we
observed of the ratio pf(ll-v). The first is that pf(ll-v) is free of ~. In order
to see this, suppose x~G( a,~).Then, using the moment generating function
technique (Mood A.M., et.a\., 2001, pg. 189) it can be shown that XI~ - G(a,1).
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If v is the median of X, then Pr(X<v)=0.5. Hence, Pr(X/I3<v/l3)=0.5. This
implies that the median of(X/I3) = v/l3. In other words, v = 13*the median of

G (a,l) distribution. Therefore, ,.u(~-v)=ul3/(ul3 -13*median of a G («, I)
distribution). This implies

,.u(~-v)=u/(u -median of a G (u,l) distribution). (4)

From (4), it is clear that ,.u(J.!-v) is free of 13and it is a function of c. only.
Figure 2 shows the relationship between ,.u(~-v) and c.

(a) (b)
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Figure 2: ,.u(~-v)versus a
Figure 2 (a) is the plot of ,.u(J.!-v) against a when a < 1. Figure 2 (b) is the

same when a ~ 1 . In order to produce these graphs, the medians of G (a,l)
distributions for different values of u were obtained using the function 'qgamma'
of the statistical package R. When ad, the relationship is non-linear.
However, when a ~ 1, ,.u(J.!-v) is almost perfectly linear in c, This is the
second interesting feature.

When a ~ 1, the suitable values for the slope and intercept of the linear
relationship can be obtained using the least square method. Based on 100
equally spaced u values between 1 and 20 and the corresponding ,.u(~-v)
values, the least square estimates for the slope and intercept are 0.2096 and
2.998 respectively. For simplicity, using 0.2 and 3 as the intercept and slope,
we can write I~" ~ 0.2 + 3a or equivalently v ~ J1 (3a -0.8) . We denote this
approximation as 98 (3a +0.2)
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(5)

Table I shows the absolute error of the approximation vBE calculated as a

percentage of the actual median v ( IV-VBEI * 100 ).
v

Table I: Absolute error ofv HE as a percentage of actual median.

a IV-VB/o I.* 100
v

v=actual median

VBE = approximation for

v

I 0.8147159

5 0.003077533

10 0.001650245

20 0.0005178544

These values show that our approximation (5) is very good when a 2: 1.
According to (2), the gamma distribution with u-c l is suitable only if the
relative frequency of values near zero are very high. Such situations are rare
in practice. Gamma distribution with a 2: 1 fits in most practical situations.
Therefore, our approximation is suitable for most practical applications.

3. Conventional Estimators for the Median of Gamma Distribution

Let v be the median of gamma distribution with shape parameter a (>0) and

scale parameter fJ (>0). The sample median and maximum likelihood estimator
are two possible estimators for the median v.
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The sample median

The sample median of a sample of size n is calculated as follows:

Sample median =

{

(n; 1) th ordered value when n is odd

n n
(-th ordered value + (- + l)st ordered value)/ 2 when n is even2 2

We shall denote this estimator by ~ Sill •

The maximum likelihood estimator

Since it is not possible to write v in terms of a and P explicitly, it is also not
possible to obtain the maximum likelihood estimator ofv in a closed form.
However, the maximum likelihood estimate of v can be obtained using the
invariance property of the maximum likelihood estimators (Mood A.M.,
at.e\., 2001). This can be done by first deriving the maximum likelihood

A A A
estimates a and a of a and P respectively, and then finding V",IL'

IIIle fJ mlc

that satisfies

f ~mle Ix (x;:X mle ; /J mle )dx = 0.5 . (6)

using the 'INVCDF' function in the statistical package Minitab or 'qgamma'
function in the statistical package R.

Anita S. et. al. (2002) have discussed the maximum likelihood estimation of

a and 13 . For the convenience of the reader, we reproduce some of their
results in this paper.

Let xl' x2 , , x; be a random sample from a G (a, 13) distribution. Then,

"maximum likelihood estimator a of P is given byfJ mle

" x
13mil! = a . (7)

It is not possible to obtain ~ nile in a closed form. The authors have provided
the following iterative procedure to obtain a .

mle
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(8)

In equation (8),

M = log(x) - ~ L)og(x;),
n

\fI(a) = ~(log rea)), and
da

\fI' (a) = ~(\fI(a)).
da

\fI (a) is the digamma function and \fI' (a) is the trigamma function, These

functions are available in R statistical software, Authors have suggested several

starting values for ao in the iterative procedure (8). We found that the moment
estimator

-

(X)2
a /tit' = ---'-----'----

!"n X2 -(XYn .L..,=I '
(9)

of a (Wiens et. al.,2003 ) also works well as the initial value ao '

As it can be seen from the above description, the derivation of the maximum

likelihood estimate VA requires intensive computations, In the next section,
nile

we introduce a new estimator which requires fewer computations,

4. A New Estimator for the Median of Gamma Distribution

Based on our approximation (5), we propose the following new estimator
for the median v of a gamma distribution.

"
1\ (3al/le-O.8) _
VBI:.' = X

1\

(3am/!+ 0,2)
(10)

Here, a" is the moment estimate of a, given by (9)
me
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5. Comparison of Estimators

Table 2 shows the root mean square errors of the three estimators ~ ,~
and ~ as percentages of the actual median. We consider three

m
valum~~

fora. (Jnder each value of a, we consider three values of p. For each
combination of a ,p we consider four sample sizes (n). For each combination
of a ,p , n, the root mean square errors were calculated based on 10000
Monte Carlo simulations.

Table 2: Root mean square errors of estimators as percentages of actual
medians.

a p v n A

RMSBy) * 100
I'

1\ 1\ 1\

V.\m V'mte VBE
I 0.5 0.35 5 68 54 57

10 44 36 39
20 32 26 29
30 27 21 24

I I 0.69 5 68 54 57
10 46 37 40
20 32 25 29
30 26 21 24

1 5 3.47 5 68 54 56
10 45 37 40
20 32 25 29
30 26 20 24

5 0.5 234 5 25 21 21
10 17 15 15
20 13 10 10
30 10 8 8

5 I 4.67 5 25 21 21
10 17 15 15
20 13 10 10
30 10 8 8

5 5 2335 5 25 21 21
10 17 15 15
20 12 10 10
30 10 8 8

10 0.5 4.83 5 17 14 14
10 12 10 10
20 9 7 7
30 7 6 6

10 1 9.67 5 17 14 14
10 12 10 10
20 9 7 7
30 7 6 6

10 5 4834 5 17 14 14
10 12 10 10
20 9 7 7
30 7 6 6
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According to the values in Table 2,

• The sample median ~ SII/ has the highest root mean square error.

• When a = 1, the maximum likelihood estimator ~ mle has the smallest

root mean square error.

• When a > 1, estimators V/\Be and v/\ have the same root mean square
r. mle

error.

6. Conclusion

The sample median ~\m is the easiest estimate to calculate. Maximum likelihood

estimator v/\ is the most difficult estimate to calculate. It requires intensive
mle

computations. Our estimator requires slightly more computations than that for
the sample median and much less computations than that for the maximum
likelihood estimate. Sample median has the highest root mean square error.
Maximum likelihood estimator (mle) has the smallest root mean square error
when a= I . The root mean square error of our estimator is slightly above that
of the mle when a= 1, but the same when a> 1. Therefore, considering the
required amount of computations and the root mean square error, our estimator
can be considered as an 'optimum' estimator for the population median, when
the gamma distribution with a ~ 1 is a suitable model for the distribution of
the variable of interest.
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