
Foliar pathogenic fungi: growing threats to global food security and ecosystem health

D. Udayanga, S.D. Miriyagalla, I.S. Herath, L.A. Castlebury, H.S. Ferdinandez and D.S. Manamgoda

REVIEW ARTICLE

Highlights

•   Foliar pathogens represent a diverse assemblage of species in the fungal kingdom.

•   Global climate change, increasing international trade of plant material, and poor phytosanitary practices lead to 
the spread of destructive diseases.

•   Non-indigenous, invasive foliar pathogens cause threats to food security and ecosystem health.

•   Therefore, emerging foliar diseases should not be ignored, especially when encountered on the new hosts and 
localities.

•   Understanding evolutionary relationships, diversity, and biology of organisms are vital to avert disease 
epidemics.
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Abstract: Globally, foliar pathogenic fungi cause serious losses 
of annual and perennial crops, ornamentals, landscape plants 
and forest trees. Plant pathogens that infect foliage are a diverse 
assemblage of fungi representing both phyla: Ascomycota 
and Basidiomycota. Although most of the species found on 
living leaves have been well studied by mycologists and plant 
pathologists, recent studies have remarkably enhanced the 
current understanding of species numbers and their evolutionary 
relationships. The impact of global climate change, the increasing 
international exchange of plant material and the lack of proper 
phytosanitary practices have resulted in the potential re-
emergences of formerly known destructive fungi, infecting new 
hosts in new geographic locations. Routinely inspecting diseased 
plants and accurately identifying and naming causative agents 
are vital for mitigating the impact of invasive and other non-
indigenous pathogens on crops and native flora. It is also necessary 
to characterise foliar pathogenic fungi based on molecular 
phylogeny, morphology, pathogenicity and the comparative 
analysis of fungal genomic data. This review provides an overview 
of prevalent groups of foliar pathogenic fungi, their diversity and 
economic impact, while emphasising emerging and destructive 
species that threaten global food security and ecosystem health.

Keywords: Climate change, Emerging pathogens, Epidemics, 
Invasive fungi, Leaf diseases.

INTRODUCTION

Plant pathogenic species comprise a diverse array of taxa 
in the kingdom of fungi (Hawksworth, 2001; Arnold, 2007; 
Naranjo-Ortiz and Gabaldón, 2019). Plant diseases have 
resulted in significant losses of yield in crops, leading to 
serious economic and social issues (Klinkowski, 1970; 
McDonald and McDermott, 1993; Alam and Rolfe, 2006; 
Marin-Felix et al., 2017). The fungi that cause foliar 
diseases have received special attention because they are 
frequently encountered in nature and are biologically and 
ecologically significant (Howard and Valent, 1996; Marin 
et al., 2003). 

Many foliar pathogens are recognised as ‘obligate 
biotrophs’, which implies that their growth and 

reproduction totally depend on the host, while others are 
opportunistic species or secondary invaders (Chaure et 
al., 2000). Foliar diseases decrease primary production by 
reduction of photosynthetic area and function (Barón et al., 
2012). In severe foliar fungal infections, plant defoliation 
and death may occur. Non-indigenous, invasive fungi have 
had a significant effect on native flora, due to their severity 
of infection and difficulty to control (Allen and Humble, 
2002; Rossman,  2008). 

Foliar fungal diseases are traditionally named for the 
symptoms observed or for the common phytopathological 
term used to refer to the group of fungi causing the disease. 
For example, informal categories of common foliage 
diseases, which are regularly found in the literature, include: 
anthracnose, leaf spots, leaf blights, tip blight, leaf scorch, 
leaf blotch, wilting, powdery mildews, rusts, and smuts 
(Callan and Carris, 2004). These phytopathological terms, 
however, do not always reflect the nature and evolutionary 
relationships of the causative agents or the disease (Figure 
1). Routine collections of foliar fungi and morphological 
identification of fungal species have been traditionally 
practiced by both plant pathologists and mycologists and 
characterised based on disease incidence and microscopic 
characteristics, coupled with pathogenicity data. These 
contributions have resulted in numerous disease reports, 
morphological descriptions and checklists. However, over 
the last few decades, the development of fungal molecular 
systematics has revolutionised the identification, species 
delimitation and phylogenetic placement of pathogenic 
species (Nilsson et al., 2014; Crous et al., 2015; Hibbett et 
al., 2016). Therefore, it is now possible to place pathogenic 
fungi in a natural classification system via molecular data 
linked to vouchered specimens and cultures (Shenoy et al. 
2007; Damm et al., 2010; Udayanga et al., 2011; 2012; 
Kõljalg et al., 2013). Accurate species identification based 
on DNA sequences and phylogenetic reconstructions 
have now become routine approaches in evolutionary 
phytopathology, supporting plant pathologists in detection, 
diagnostics, diversity estimation, disease surveillance and 
management. Additionally, historical disease collections 
made by numerous mycologists and plant pathologists 



338 Ceylon Journal of Science 49 (Special Issue) 2020:337-353

are available in several international herbaria around 
the world. These collections are excellent sources for 
the sampling of taxa collected in the past from different 
geographic regions of the world. The pieces of evidence 
gathered based on these specimens provide a significant 
contribution to epidemiological efforts of predicting disease 
origins, modeling of dispersal patterns, and foreshadowing 
potential invasions.

Foliar diseases on crops and ornamentals have caused 
invasions, severe outbreaks and epidemics in human 
history. One such outbreak of coffee leaf rust, caused by 
the fungus Hemileia vastatrix, hit the celebrated coffee-
production areas of Sri Lanka (then known as Ceylon) 
circa 1869. The same fungus has been the cause of recent 
coffee rust disease outbreaks in Colombia (2008 to 2011), 
Central America and Mexico (2012 to 2013) and Peru and 
Ecuador (2013), leading to an ongoing crisis in global 
trade (Avelino et al., 2015; World Coffee Research, 2018; 
Amico et al., 2020). Due to its significant impact on trade, 
coffee rust is considered one of the most economically 
important coffee diseases worldwide (Villarreyna et al., 
2020). The dematiaceous hyphomycete, Bipolaris oryzae, 
causes devastating brown spot diseases in rice. This was 
one of the factors leading to India’s Bengal famine of 
1943 (Scheffer, 1997). Although it has not caused severe 
outbreaks in recent times, the same fungus is still being 
encountered in major rice growing regions worldwide 
(Manamgoda et al., 2014; Sobanbabu et al., 2018). The 
rice blast fungus, Pyricularia oryzae (syn. Magnaporthe 
oryzae), is considered the most destructive leaf pathogen 
in rice, causing recurrent outbreaks (Couch and Kohn, 
2002). This disease is difficult to control and destroys up 
to 30% of the world’s rice crop each year, resulting in 
potential economic and humanitarian crises, particularly 
in Asia (Savary et al., 2000; Saleh et al., 2014; Khan et 
al., 2016; Nalley, 2016). Pyricularia oryzae is widely 
used to study the molecular basis of diseases and host-
pathogen interactions (Dean et al., 2012). Boxwood blight 
is another invasive disease, which originated in the United 
Kingdom in 1994 and is currently distributed throughout 
Asia, Europe, North America, and New Zealand (LeBlanc 
et al., 2018). As the name suggests, boxwood blight is a 
disease affecting boxwood (Buxus spp.) and causes rapid 
defoliation and the latent dieback of foliage (Malapi-
Wight et al., 2014; Daughtrey, 2019). Recent outbreaks of 
boxwood blight disease, caused by the fungus Calonectria 
pseudonaviculata, threaten the health and productivity of 
boxwood in both landscape plantings and nurseries, posing 
a major threat to the ornamental plant industry (LeBlanc 
et al., 2018). Plants infected by C. pseudonaviculata are 
eventually weakened, and the resulting plant stress and 
consequent colonisation by secondary invaders often 
results in plant death.

Though surveillance and management methods can 
be effectively applied to prevent severe impacts, many 
of the fungi causing outbreaks have no cure. The past 
few decades have witnessed an increasing number of 
severe fungal infectious diseases in natural populations 
of humans, animals and plants (Vinatzer et al., 2019). As 
with the recent global challenge of the novel coronavirus 

disease (COVID-19) in humans, scientists predict that a 
potential crop pandemic will occur sooner rather than later. 
It is highly likely that such an outbreak will be caused by 
a plant pathogenic fungus (Owings, 2020; Broom, 2020; 
Horvath, 2020). Potential outbreaks of phytopathogenic 
fungi could impact food supply systems by crop production 
in the affected areas. However, with the global population 
projected to number more than nine billion by 2050, the 
food supply will need to be protected to satisfy increasing 
demand.

Foliar fungal diseases have received much attention 
in recent history because they cause rapid losses in crop 
production. Some plant pathogenic fungi have intricate 
or poorly understood lifecycles, and few discriminatory 
morphological characteristics (Wikee et al., 2011; Aime et 
al., 2018). Therefore, understanding the biology, ecology, 
diversity and evolution of foliar pathogenic fungi is key to 
predicting threats and implementing mitigation strategies. 
This review outlines the diversity and impact of foliar 
pathogenic fungi based on key examples of prevalent 
fungal groups associated with economically important 
plants, with emphasis on emerging and potentially invasive 
species. Furthermore, we highlight the potential threats by 
foliar pathogenic fungi in the future on global food security 
and ecosystem health, based on their records of known 
historical impact on food crops or other economically 
important plants.

Diversity of foliar pathogens in the fungal kingdom

Foliar pathogenic species are a diverse assemblage of 
fungi belonging to both Ascomycota and Basidiomycota. 
These include many well-known pathogenic groups. The 
fungal classes Dothideomycetes, Sordariomycetes and 
Leotiomycetes, in  Ascomycota are composed of ecologically 
diverse species, including many foliar pathogens that affect 
high value crops, ornamentals and forest trees (Table 1). 
Similarly, fungi belonging in Basidiomycota are well-
known causative agents of a large number of severe 
fungal plant diseases. For instance, rust fungi, belonging 
in the Basidiomycota, class Pucciniomycetes, are widely 
distributed parasites found in various geographic locations 
worldwide (Arthur, 1934; Savile, 1971; Smith et al., 2004; 
Padamsee et al., 2012; Aime et al., 2014). Smut fungi make 
up a second well-known group, consisting of a few severe 
foliar pathogens that parasitize cereals and fibre crops. 
Another well-known basidiomycetous foliar pathogenic 
genus, Exobasidium, which includes the causative agent 
of blister blight in tea (E. vexans) belongs to the class 
Exobasidiomycetes (Sinniah et al., 2016; Weerasooriya 
et al., 2018). Exobasidium vexans is a relatively poorly 
studied obligate biotrophic pathogen, but it has serious 
ramifications for the quality of tea production (Chaliha et 
al., 2019).

Apart from well-known foliar fungi, a large number of 
novel leaf diseases and host associations occurring in crops, 
ornamental plants and forest trees are being reported in 
recent phytopathological and mycological literature (Chen 
et al., 2018; Rodriguez-Salamanca, 2018; Tsai et al., 2018; 
Salgado-Salazar et al., 2019; Liang et al., 2019). These 
previously undescribed fungi are commonly encountered 
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Figure 1 : Microscopic images of some foliar diseases and their causative agents. 
A) Leaf blight on Prunus serrulata (Japanese cherry) caused by Botryosphaeria dothidea B) Leaf blight of Fragaria × annassa 
(cultivated strawberry) caused by Neopestalotiopsis sp. C) Leaf scorch of Fragaria × annassa caused by Diplocarpon fragariae D) 
Oak blight of Quercus macrocarpa  (Bur Oak) caused by Tubakia iowensis E) Orange rust on Duchesnea indica (mock strawberry) 
caused by Phragmidium tormentillae F) Bird’s eye spot of Hevea brasiliensis (Pará rubber) caused by Bipolaris heveae. Scale bars: 
A-F: 10 µm. Images were captured using a Discovery V20 stereomicroscope and AxioCam HrC digital camera (Carl Zeiss Microscopy, 
Thornwood, New York, USA) imaging system.

in relatively unexplored habitats, and numerous cryptic 
species are also being revealed in molecular mycological 
studies. According to Hawksworth and Rossman (1997), 
many fungal species have been collected, but remain lost 
or hidden as named species or ignored because they lack 
modern characterisations. Although a large number of 
genera and species of plant pathogenic fungi have been 
documented in the extant body of literature, most names are 
either not in use or the fungi are otherwise poorly known 
(Marin-Felix et al., 2017). Therefore, it is not surprising 
that the foliar pathogenic continuum of fungi has yet to be 
fully explored, particularly among many poorly studied 
groups.

Host, pathogen and environment for the emergence of 
foliar diseases

Although fungi are commonly associated with leaf 
diseases, most fungal diseases minimally affect the plant’s 
overall leaf area, causing minor biotic stress in terms of 
overall growth and development. Annual crops are infected 
with leaf pathogens mostly at the latent stage of growth or 
near harvest; thus, they may minorly impact production in 
most cases. However, environmental changes can directly 
influence the development and survival rates of foliar 
pathogens, modify host susceptibility and subsequently 
alter the effects of the diseases on host plants (Fisher, 
2012; Elad and Pertot, 2014; Velásquez et al., 2018). In 
hot and humid conditions, when infection pressures for 
fungal pathogens are high, leaf pathogens can cause severe 
defoliation and plant death. Therefore, climate factors, 
pathogen virulence and the dynamics of foliar disease add 

an extra level of complexity to plant protection. In addition, 
pathogen growth rates and the production and germination 
of propagules strongly depend on temperature, relative 
humidity and, in the case of foliar pathogens, often leaf 
wetness (Colhoun, 1973; Huber and Gillespie, 1992).

Plant foliage is the often the first line of contact for 
invasive and non-indigenous fungal species. Most foliar 
pathogens, when successfully colonised on leaves, have 
the advantage of being able to be dispersed by the wind, 
making them widely distributed across geographical 
borders. Some foliar fungal species asymptomatically 
hitchhike within the plant tissues as endophytic fungi and 
can become latent pathogens on the same or different hosts 
when the environmental conditions are favourable (Petrini 
et al., 1991; Slippers and Wingfield, 2007; Gomes et al., 
2013).

Crops heavily sprayed with fungicides might never show 
infections from some common foliar pathogens (Haq et al., 
2020). However, leaf diseases are often taken seriously 
only if they result in a sudden outbreak or cause moderate 
to complete defoliation a few years in a row. Leaf loss over 
several consecutive growing seasons in plants infected 
with destructive foliar fungi can result in increased levels 
of inoculum, reduced growth, and increased susceptibility 
to pests and other diseases, leading to severe economic 
losses or environmental threats.
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Table 1: Examples of destructive foliar pathogenic fungal species causing diseases on crops and ornamentals, their current 
classification, prevalent host(s), disease and supporting literature.

Foliar pathogenic 
species (current 
name)

Current classification 
(Phylum, Class & 
Order)

Prevalent 
Host(s)*

Foliar disease Supporting Literature

Austropuccinia psidii Phylum: Basidiomycota
Class: Pucciniomycetes
Order: Pucciniales

Myrtaceae 
hosts

Myrtle rust du Plessis (2019)

Bipolaris oryzae Phylum: Ascomycota
Class: Dothideomycetes
Order: Pleosporales

Oryza sativa 
(rice)

Brown spot of rice Manamgoda et al., (2014); 
Sobanbabu et al., (2018) 

Bipolaris maydis Phylum: Ascomycota
Class: Dothideomycetes
Order: Pleosporales

 Zea mays 
(maize)

Southern leaf 
blight of corn

Manamgoda et al., (2014); Macedo 
et al., (2016)

Bipolaris sorokiniana Phylum: Ascomycota
Class: Dothideomycetes
Order: Pleosporales

Triticum 
aestivum 
(wheat)

Leaf spot Wang and Wei (2016); Li et al., 
(2019)

Cercospora sojina Phylum: Ascomycota
Class: Dothideomycetes
Order: Capnodiales

Glycine max 
(soybean)

Frog eye leaf spot Zhang and Bradley (2014); 
Shreshta et al., (2017)

Calonectria 
pseudonaviculata

Phylum: Ascomycota
Class:  Sordariomycetes
Order: Hypocreales

Buxus sp. Boxwood blight Gauthier  and Dockery  (2018)

Colletotrichum spp. Phylum: Ascomycota
Class: Sordariomycetes
Oder: Glomerellales

Hevea 
brasiliensis 
(Pará rubber)

Colletotrichum 
Leaf Disease /
CLD

Hunupolagama et al., (2017); Cao 
et al., (2019)

Colletotrichum spp. Phylum: Ascomycota
Class: Sordariomycetes
Order: Glomerellales

multiple genera 
of plants  

Anthracnose Cao et al (2019); Nascimento et al 
(2019)

Diaporthe ampelina Phylum: Ascomycota
Class: Sordariomycetes
Order: Diaporthales

Vitis spp., 
Ampelopsidis 
spp.

Cane and leaf spot Guarnaccia et al., (2018)

Diplocarpon fragariae Phylum: Ascomycota
Class: Leotiomycetes
Order: Helotiales

Fragaria sp. 
(strawberry)

Leaf scorch Sivanesana and Gibson (1976); 
Johnston et al., (2014)

Discula destructiva Phylum: Ascomycota
Class:  Sordariomycetes
Order: Diaporthales

Cornus spp. Dogwood 
anthracnose

Redlin (1991); Trigiano et al., 
(2016)

Entyloma helianthi Phylum: Basidiomycota
Class: Exobasidiomycetes
Order: Entylomatales

Helianthus 
annuus 
(sunflower)

Sunflower leaf 
smut

Rooney-Latham et al., (2017)

Entyloma oryzae Phylum: Basidiomycota
Class: Exobasidiomycetes
Order: Entylomatales

Oryza sativa 
(rice)

Rice leaf smut Mulder and Holliday (1971); Vanky 
(2012)

Exobasidium vexans Phylum: Basidiomycota
Class: Exobasidiomycetes
Order: Exobasidiales

Camellia 
sinensis (tea)

Blister blight Mabbett (2016)

Exserohilum turcicum Phylum: Ascomycota
Class: Dothideomycetes
Order: Pleosporales

 Zea mays 
(maize)

Northern leaf 
blight of corn

Hernandez-Restrepo et al., (2018); 
Nieuwoudt et al., (2018)

Hemileia vastatrix Phylum: Basidiomycota
Class: Pucciniomycetes
Order: Pucciniales

Coffea spp. Coffee rust Talhinhas et al., (2017); Santana et 
al., (2018)

Melampsora medusae Phylum: Basidiomycota
Class: Pucciniomycetes
Order: Pucciniales

Populus spp. Poplar leaf rust Feau et al., (2009); Newcombe and 
Chastagner (1993)
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Phakopsora 
pachyrhizi

Phylum: Basidiomycota 
Class: Pucciniomycetes
Order: Pucciniales

Glycine max 
(soybean)

Asian soybean rust Rincão et al., (2018)

Podosphaera xanthii Phylum: Ascomycota
Class: Leotiomycetes
Order: Erysiphales

multiple genera 
of plants. 

Powdery mildew Chen et al., (2017); Cho et al., 
(2017)

Pseudocercospora 
fijiensis

Phylum: Ascomycota
Class: Dothideomycetes
Order: Capnodiales

Musa spp. 
(banana)

Black Sigatoka 
disease (black leaf 
streak) 

Manzo-Sanchez et al., (2019); 
Fullerton and Casonato (2019)

Puccinia triticina Phylum: Basidiomycota
Class: Pucciniomycetes
Order: Pucciniales

Triticum spp. Wheat leaf rust Terefe et al., (2014)
Kolmer (2015)

Pyricularia oryzae Phylum: Ascomycota
Class:  Sordariomycetes
Order: Magnaporthales

Oryza sativa 
(rice)

Rice blast disease
 

Klaubauf et al., (2014); Milazzo et 
al., (2019)

Spilocaea oleagina Phylum: Ascomycota
Class: Dothideomycetes
Order: Pleosporales

Olea spp. 
(Olive)

Peacock leaf spot González-Lamothe et al., (2002)

Teratosphaeria spp. Phylum: Ascomycota
Class: Dothideomycetes
Order: Capnodiales

Eucalyptus spp. Leaf blight Crous et al., (2009); (2019)

Urocystis cumminsii Phylum: Basidiomycota
Class: Ustilaginomycetes
Order: Urocystidales

Dichelostemma 
capitatum

Leaf smut Savchenko et al., (2020)

Urocystis  tritici Phylum: Basidiomycota
Class: Ustilaginomycetes
Order: Urocystidales

Triticum spp. 
(wheat)

Flag smut Savchenko et al., (2016)

Ustilago cynodontis Phylum: Basidiomycota
Class: Ustilaginomycetes
Order: Ustilaginales

Cynodon 
dactylon

Leaf stripe smut Kruse et al., (2018)

Ustilago serpens Phylum: Basidiomycota
Class: Ustilaginomycetes
Order: Ustilaginales

Elymus repens Leaf stripe smut Kruse et al., (2018)

Zymoseptoria tritici Phylum: Ascomycota
Class: Dothideomycetes
Order: Capnodiales

Triticum 
aestivum 
(wheat)

Leaf spot or 
speckled leaf 
blotch 

Allioui et al., (2016); Harrat et al., 
(2017)

*Other hosts can be retrieved at Fungal Databases of USDA-ARS: https://nt.ars-grin.gov/fungaldatabases/ (Farr and Rossman, 2020)

Colletotrichum, the cause of foliar anthracnose

Colletotrichum is a genus of plant pathogenic fungi 
(phylum: Ascomycota; class: Sordariomycetes) with 
worldwide distribution (Hyde et al., 2009; Cannon et al., 
2012). Anthracnose caused by Colletotrichum species is 
primarily defined as sunken necrotic spots or blights on 
leaves, stems, flowers or fruits (Udayanga et al., 2013; 
Shivas et al., 2016; De Silva et al., 2017; Sangpueak et al., 
2018). Foliar anthracnose is commonly found in tropical 
and subtropical environments, affecting wide ranges of 
crops, including cereals, grasses, vegetables, ornamentals 
and forest trees (Alahakoon et al., 1994; Crouch et 
al., 2009; Lobato et al., 2010; Nair, 2010; Rojas et al., 
2010; Damm et al., 2012a, 2012b). Therefore, the foliar 
Colletotrichum species are considered to be a major cause 
of pre- and post-harvest loss of a wide range of high-value 
crops, and these species are also commonly encountered 
in plant biosecurity interceptions (Udayanga et al., 2013; 
Shivas et al., 2016; De Silva et al., 2017).

Collectotrichum species are frequently encountered 
in routine collections of leaf necrotic symptoms. These 
species usually co-occur with other ascomycetes, either 
as primary pathogens or as secondary invaders. Amongst 
prevailing foliar diseases, anthracnose caused by 
Colletotrichum species is one of the most severe diseases 
among cultivated rubber trees (Hevea brasiliensis) (Liu et 
al., 2018). Colletotrichum Leaf Disease (CLD) is a major 
cause of declining rubber yields in South East Asia. In Sri 
Lanka, CLD reached an epidemic magnitude in February 
and March 1996 due to unusually wet weather (Jayasinghe 
et al., 1997). In many parts of the world, Colletotrichum 
gloeosporioides is the causative agent of CLD in rubber. 
Apart from the species in the C. gloeosporioides species 
complex, C. acutatum is also a major causative agent of 
CLD, particularly in Sri Lanka (Jayasinghe et al., 1997). 
The most common CLD symptom in rubber is small to 
large circular lesions on mature and immature leaves. CLD 
development may also significantly reduce rubber yield by 
secondary leaf fall. In severe epidemics, CLD also affects 
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young twigs with premature leaves, causing the tips to 
blacken and the typical brown to black anthracnose lesions 
to form on the green stems (Hunupolagama et al., 2017).

Accurately identifying the species causing CLD 
is critical for understanding the epidemiology and 
developing effective control measures. However, the genus 
Colletotrichum contains many species with overlapping 
morphological characteristics, which may vary due to 
environmental conditions and geography, thus making 
species delimitation difficult. Therefore, an approach 
involving both morphological characteristics and multi-
loci phylogenetic analysis is recommended for accurately 
identifying these Colletotrichum species (Cai et al., 
2009). According to Marin-Felix et al., (2017), there 
are approximately 11 distinct Colletotrichum species 
complexes: gloeosporioides, boninense, truncatum, 
acutatum, dematium, gigasporum, orbiculare, graminicola, 
spaethianum, destructivum and caudatum. Each complex 
contains numerous phylogenetically closely related 
species, some of which are rich in species numbers. For 
example, the gloeosporioides clade alone consists of 
at least 30 different species, associated with numerous 
host plants causing minor to severe diseases. This 
enormous diversity and the frequent occurrence of foliar 
Colletotrichum pathogenic species in nature highlights the 
need for repeated collection and identification, particularly 
from unexplored ecosystems, to understand patterns of 
pathogen distribution and disease incidence. The rapidly 
growing species numbers, new disease reports and novel 
host associations of Colletotrichum species in the last 
two decades illustrate the unprecedented impact of these 
fungi in agriculture and ornamental trade. Thus, the timely 
responses to initial outbreaks are essential to prevent a 
possible impact on high-value crops and native flora. 

Diaporthalean fungi causing foliar diseases

Species of Diaporthales (Ascomycota) have been 
extensively studied and the order is one of the largest and 
most well-defined orders in the Sordariomycetes class of 
Ascomycota (Castlebury et al., 2002; Zhang et al., 2006; 
Rossman et al., 2007). The order Diaporthales contains 
a large number of notable fungi causing serious diseases 
in a wide range of plant hosts, including landscape trees 
and field crops, across both tropical and temperate natural 
ecosystems (Zhang and Blackwell, 2001; Adams et al., 
2006; Gryzenhout et al., 2006; Udayanga et al., 2014, 2015). 
An early twentieth century outbreak of the chestnut blight 
pathogen, Cryphonectria parasitica (Cryphonectriaceae), 
which belongs to the Diaporthales, caused the defoliation 
and death of chestnut trees in North America (Anagnostakis 
1987; Brewer 1995). Thus, due to their wide occurrence 
and enormous diversity, the diaporthalean fungi cause 
devastating diseases in economically important host plants, 
resulting in sudden outbreaks, local losses and quarantine 
issues affecting international trade. 

Though diaporthalean species are primarily known 
to cause various stem blights, cankers, root rots and 
fruit disease, many are also known to cause severe foliar 
diseases in economically important crops and forest trees. 
For instance, dogwood anthracnose (Discula destructiva), 

strawberry leaf blotch (Gnomoniopsis fructicola), and 
Bur Oak blight (Tubakia iowensis) have caused notable 
disease incidents. Of these, D. destructiva has significantly 
impacted wild and ornamental Cornus species in the 
United States, proving itself to be a potentially devastating 
fungal disease, in both landscapes and forests throughout 
the eastern and northwestern United States since the late 
1970’s. Many genera in the Diaporthales are species-rich 
and widely encountered as asexual morphs on the leaves 
and stems of living plants. Diaporthalean fungi are also 
commonly encountered during quarantine inspections, 
leading to various issues affecting international trade 
of plant material (Kačergius et al., 2010; Duan et al., 
2016). The wide occurrence and the unexpected diversity 
of pathogenic species in the Diaporthales have made it 
possible to cause devastating diseases on economically 
important host plants, resulting in sudden outbreaks and 
yield losses. 

Foliar pathogenic graminicolous hyphomycetes

Hyphomycetes are a type of mitosporic fungi, which 
lack closed fruiting bodies and directly produce conidia 
via conidiophores during their asexual lifecycles (Ellis, 
1971). Graminicolous hyphomycetes are associated with 
grasses and related crops in the Poaceae plant family 
(Sivanesan, 1987). Most graminicolous hyphomycetes are 
helminthosporoid species, which are now divided into six 
genera – Bipolaris, Curvularia, Drechslera, Exserohilum, 
Johnalcornia and Porocercospora – belonging to the 
Pleosporales (Dothideomycetes, Ascomycota) (Sivanesan, 
1987; Manamgoda et al., 2012; Amaradasa et al., 2014; Tan 
et al., 2014; Hernandez-Restrepo et al., 2018). In addition 
to helminthosporoid graminicolous hyphomycetes, 
several other fungal genera, encountered as graminicolous 
hyphomycetes (e.g., alternarioid and cercosporoid fungal 
species) also have detrimental effects on plants.

Graminicolous hyphomycetes associated with cereal 
crops and their wild relatives have been reported as 
destructive phytopathogens, leading to significant yield 
losses and starvation worldwide. Severe crop losses have 
been reported in the United Kingdom and the United 
States, due to Southern corn leaf blight, caused by 
Bipolaris maydis (Manamgoda et al., 2011), and Northern 
corn leaf blight, caused by Exserohilum turcicum (Smith 
et al., 1988). Bipolaris sorokiniana is another common 
leaf spot pathogen in wheat and barley (Duveiller and 
Gilchrist, 1994). Though graminicolous hyphomycetes are 
primarily identified via morphology, successful species-
level delimitation is always followed by comprehensive 
phylogenetic analyses incorporating molecular data 
(Manamgoda et al., 2014, 2015; Tan et al., 2014, 2016, 
2018; Marin-Felix et al., 2017, 2020). For instance, species 
discrimination of the genus Curvularia, solely based on 
morphological characteristics, is difficult as they share 
similar characteristics therefore, multi-locus, combined 
analyses are required in phylogenetic reconstruction 
(Manamgoda et al., 2015; Tan et al., 2018; Marin-Felix et 
al., 2017, 2020). However, the diversity, wide distribution 
and impact of graminicolous hyphomycetes on food and 
fibre security emphasise the need for the study of these 
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fungi, as they can emerge as outbreaks anywhere in the 
world.

Fungi causing powdery mildew

Powdery mildew is a common, serious, economically 
significant disease, which affects various crops (e.g., cereal 
plants, vegetables, fruit trees and ornamental plants) and 
has been reported to have an exclusively angiosperm host 
range (Mori et al., 2000). However, characterised by the 
formation of a white, powdery film on leaf surfaces, stems 
or fruits (Mori et al., 2000), powdery mildew is, to a greater 
degree, considered a foliar pathogen, given the extent of 
the foliar damage it causes, compared with damage to 
other plant organs. Powdery mildew is caused by obligate 
biotrophic pathogenic fungi belonging to the Erysiphaceae 
family, the sole family in the Erysiphales (class: 
Leotiomycetes, phylum: Ascomycota) (Ito and Takamatsu, 
2009). By reducing leaf surface area for photosynthesis, 
and thus reducing crop quality and yield, Erysiphales 
pathogens turn themselves into a major economic concern. 

The Erysiphaceae contains 16 genera, including 
approximately 873 species (Takamatsu et al., 2015). In 
accordance with molecular-level investigations, all 16 
genera are divided into five main tribes: Blumerieae, 
Golovinomyceteae, Cystotheceae, Erysipheae and 
Phyllactinieae (Braun, 2010; Takamatsu et al., 2015). The 
Erysiphales order is reported to house both tree-parasitic 
and herb-parasitic species. The early divergent species are 
mostly tree-parasitic, indicating the occurrence of host 
shifts from trees to herbs over the course of evolution 
(Takamatsu, 2004). Early speculations concerning the 
phylogeny and host relationships of Erysiphales were based 
on critical morphological features (e.g., number of asci, 
number of ascospores, morphology of appendages, nature 
of conidiogenesis and mycelium features), whereas more 
recent taxonomic studies using molecular characteristics 
have given better insights into the phylogenetic aspects of 
the order and have helped restructure the taxonomic groups 
vastly (Takamatsu, 2013). Most of the tribes are well 
defined by molecular analyses, except Erysipheae, which 
contains the sole genus Erysiphe – the largest of all genera 
in the family, accounting for more than half of its species 
(Takamatsu et al., 2015). 

Most economic implications are caused by the herb-
parasitic, rather than the tree-parasitic, species. Most 
monocot hosts of powdery mildews (such as wheat, 
barley, rye, oats, etc.) belonging to the family Poaceae, are 
valued food crops. These are often associated with a single 
pathogenic genus, Blumeria, within the Blumerieae tribe 
(Inuma et al., 2007). The genus Golovinomyces housed 
within the Golovinomyceteae tribe, comprises the causative 
agents of powdery mildew in common ornamental plants, 
such as Asteraceae (daisies), Boraginaceae (borages) and 
Lamiaceae (mints) (Takamatsu et al., 2013). The most 
commonly reported cases of Cucurbit Powdery Mildew 
(CPM) disease affect economically important crops in 
the Cucurbitaceae family (including cantaloupes, melons, 
squash and pumpkins). Causative agents of CPM include 
Podosphaera xanthii of the Cystotheceae tribe and 
Golovinomyces orontii (syn. Erysiphe cichoracearum); 

these are considered the major threats to the worldwide 
cultivation of cucurbits (Pirondi et al., 2015; Rebelo et 
al., 2017). The three genera – Leveillula, Phyllactinia, 
and Pleochaeta – in the Phyllactinieae tribe generally 
infect hosts in the Ulmaceae (elm) and Fabaceae (pea) 
families. Increasingly incorporating molecular data and 
new morphological characteristics into taxonomic studies 
has helped researchers describe new species, as well as 
asexual morphs of known sexual morphs (Braun, 2010). 
Several sources record epidemics that resulted from 
powdery mildews being introduced into regions in which 
it had not been previously reported. Some historical 
examples include the introduction of Erysiphe necator, the 
grape powdery mildew pathogen, into Europe from North 
America during the nineteenth century and the introduction 
of Sphaerotheca mors-uvae, or the American gooseberry 
mildew, into Europe and Asia from North America (Kiss, 
2005). Erysiphe flexuosa, which infects horse chestnuts, 
and E. elevata, which infects Indian beans, are some recent 
examples of the alien introduction of powdery mildew 
pathogens into the European region (Ale-Agha et al., 
2000). The obligate biotrophic nature of powdery mildews 
enables them to grow and reproduce exclusively on specific 
host plants. Additionally, the prodigious production of 
spores and quick dispersal patterns allow these fungi to 
infect a wide area of agricultural fields, leading to rapid 
losses of high-value crops and hindering ornamental trade 
of plant material.

Rust fungi

Placed in the order Pucciniales (phylum: Basidiomycota, 
class: Pucciniomycetes), ‘rust fungi’ are a species-rich 
group of parasitic, foliar fungal pathogens, which are 
capable of inducing extensive economic and ecological 
damage (Aime et al., 2018). With more than 7,800 species 
recorded, these obligate biotrophic pathogens belong 
to approximately 115 to 163 genera (Aime et al., 2006; 
Figueroa et al., 2020), but the family classifications remain 
doubtful and require further clarification. Rust fungi have 
complex life cycles, sometimes involving unrelated but 
specific plant hosts and (at most) five different spore types. 
These pathogens can reduce crop yields by depositing 
rusty-brown/orange, powdery spores on leaf surfaces, 
reducing the photosynthetic capacities of their hosts and 
diverting photosynthates into their own biomass (Aime 
et al., 2018). Important cereal crops, legumes, and trees 
such poplar, pine and Eucalyptus spp., are at high risk of 
infection from rust fungi (Figueroa et al., 2020). 

Many different Puccinia species have been major 
culprits of numerous wheat rust epidemics worldwide, 
owing to their ability to spread over thousands of kilometres, 
across continents and oceans, via the wind (Kolmer, 2005). 
The first major epidemic of wheat stem rust, caused by 
Puccinia graminis, occurred in Ethiopia during 1993 and 
1994. Since then, many other wheat rusts, like P. triticina 
(wheat leaf rust) and P. striiformis (stripe/yellow rust) have 
become more frequent in Africa, the Middle East, Asia, 
Australia, New Zealand, Europe and America, in the major 
wheat cultivating regions of the world (Singh et al., 2008). 
Another recent alien invasion into the Western hemisphere 
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occurred in South and North America. Phakopsora 
pachyrhizi, the causal agent of Asian soybean rust, arrived 
from Asia, with Brazil bearing the highest losses – as 
great as an estimated US$2 billion in 2003 (Yorinori et 
al., 2005). Coffee rust, caused by Hemileia vastatrix was 
first reported in Sri Lanka circa 1869 (Monaco, 1977) 
and subsequently spread across Southern India and Java, 
causing coffee cultivation to be terminated entirely. 
Another outbreak in Angola in 1966 initiated the spread of 
H. vastatrix across the Atlantic, reaching Brazil (Bowden et 
al., 1971). Myrtle rust, caused by Austropuccinia psidii, is 
a widely distributed rust disease, which infects Myrtaceae 
and Heteropyxidaceae plants. Austropuccinia psidii was 
first identified in 1884 from guava in Brazil before it 
spread into Central and South America, South Florida and, 
later, to Australia, Japan, China and South Africa, infecting 
numerous economically important hosts (Yamaoka, 2014). 
White pine blister rust, caused by Cronartium ribicola has 
also caused decades of epidemic conditions, decimating 
most of the white pine forests in the United States and 
Canada (Kinloch, 2003).

The current rate of climate change, which is 
continuously altering global temperatures, moisture levels, 
solar radiation levels and wind turbulence, can intensify 
the potential of rust fungi epidemics by influencing disease 
establishment and dispersal and, thereby, extending the 
infection range (Desprez-Loustau et al., 2007). Thus, ideal 
environmental conditions (especially increased moisture 
levels on leaf surfaces) lead to new suitable climate 
spaces for rust diseases. Host plant homogenisation is 
another inductive factor, which creates greater numbers of 
susceptible host individuals (Helfer, 2013). The virulence 
of rust pathogens can depend on temperature (Evans et 
al., 2007), and pathogen aggressiveness (e.g., speed and 
reproduction success) may also increase as hosts become 
more susceptible due to climate-change-induced stresses 
(Helfer, 2013). The global plant trade can also regularly 
expand the range of host plants and their rusts, while 
the movement of rust species globally can provide the 
opportunity for novel hybrid species to be generated, which 
can eventually give rise to new, even more destructive, 
host–rust relationships. 

Smut fungi

Smuts (Ustilaginomycotina) belong to a heterogeneous 
group of fungi that parasitize plant hosts and produce 
teliospores as a means of reproduction (Schafer, 1987; 
Vánky, 2004; Bauer et al., 2008). Smut fungi are the 
second largest group of plant parasitic Basidiomycota. 
The species commonly known as smuts share similar 
lifecycles and cellular organisation. Smuts affect a number 
of economically important cereal crops, their relatives in 
the Poaceae family as well as some economically important 
non-poaceous hosts like sunflower (Asteraceae). Although 
smuts primarily infect panicles and seeds of cereal crops, 
some species infect leaves of crops and ornamental herbs, 
resulting in severe damage. The fungus produces slightly 
raised, angular, black spots (sori) on both sides of the 
leaves, causing severe loss of photosynthetic pigmentation. 
Similarly, many smuts infect commercially important 

crops, considerably impacting yield as well as the aesthetic 
nature of ornamentals.  

The flag smut disease in wheat produces long, grey and 
black lesions on leaves and leaf sheaths and causes stunted 
plants with deformed tillers. The leaves of infected plants 
are twisted and covered with long, grey lesions, which 
break open to release black, powdery spores. The fungus 
causing flag smut, has been referred to as both Urocystis 
agropyri and U. tritici. Savchenko et al., (2016) identified 
Urocystis agropyri as a distinct taxon from U. tritrici, which 
is the cause of flag smut disease on wheat (Savchenko et 
al., 2016). In addition to losses in yield, wheat flag smut 
is quarantined in many countries, and shipments of wheat 
with flag smut spores can be refused entry (EPPO Global 
Database, 2020). 

Stripe smut in grasses, caused by Ustilago striiformis 
s.l., is a complex of smut fungi widely distributed over 
both temperate and subtropical regions (Savchenko et al., 
2014; Kruse et al., 2018). It is estimated that nearly 100 
different grass species, belonging to more than 30 genera, 
are susceptible to stripe smut (Savchenko et al., 2014). This 
disease causes shredding and death of leaf tissue, following 
the rupture of elongated sori (Toh and Perlin, 2016). Rice 
leaf smut is caused by Entyloma oryzae, and it is a widely 
distributed, but somewhat minor, disease (Vanky et al., 
2011, Vanky, 2012).

Among the diseases on non-poaceous hosts, sunflower 
white leaf smut is caused by a recently described species, 
Entyloma helianthi, from the United States (Rooney-
Latham et al., 2017). It is a relatively minor foliar disease, 
occurring primarily in greenhouse-grown sunflowers, 
which causes leaf spot, defoliation and reduced crop yield 
and value (Rooney-Latham et al., 2017).  

Relatively fewer numbers of molecular phylogenetic 
studies are available for smut fungi, therefore much work 
is required to develop backbone phylogenetic trees and 
to resolve species complexes (Kruse, 2018). Smuts are 
significant, not only as prevalent pathogens, but also as 
models for other basic and practical scientific areas of 
investigation, including obligate biotrophy, evolution and 
disease invasion. Thus, the foliar smuts can cause severe 
loss of cereal crop production, leading to severe threats 
for food security both regionally and globally. Moreover, 
the international trade of cereal crops can be affected 
by unexpected issues due to the sudden emergence of 
unknown diseases and spread of invasive smuts across the 
geographic borders.

Insights in to foliar fungi - impact of molecular 
systematics and genomics

The past two decades have witnessed exponential growth 
in understanding the magnitude of fungal diversity, species 
numbers and their relationships, due to advances in DNA 
sequencing technologies and state-of-the art analytical 
methods (Blackwell et al., 2006; Crous et al., 2015). 
Molecular systematics is using promising tools to reveal 
the unexplored fungal diversity associated with plants as 
pathogens, saprobes, endophytes and other mutualistic 
species. DNA-based taxonomy has allowed mycologists to 
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resolve cryptic diversity in the species-rich genera of fungi, 
such as Alternaria, Bipolaris, Curvularia, Colletotrichum, 
Diaporthe, Fusarium and Neopestalotiopsis, which 
include large numbers of foliar pathogens. Large numbers 
of available nuclear ribosomal internal transcribed spacer 
region (ITS) fungal barcode sequences in GenBank, as 
well as other curated fungal DNA sequence repositories 
such as UNITE (Kõljalg et al., 2013 https://unite.ut.ee/), 
have facilitated the plant pathology field and other 
interdisciplinary areas related to fungal research (Nilsson 
et al., 2014). Multi-gene phylogenies of leaf-inhabiting 
genera have been used to resolve many species complexes 
in fungi, combined with a consolidated approach to 
species recognition criteria, including morphological, 
biochemical, physiological and pathogenicity data. 
Phylogenetic reconstructions not only resolve the evolution 
of pathogens, but can also be used to develop predictive 
tools for phytosanitary risk analysis in crop protection and 
biosecurity (Gilbert et al., 2012; Gilbert and Parker, 2016).

The genomic data of plant pathogenic fungi generated 
by high-throughput DNA sequencing platforms could reveal 
reliable DNA markers for disease diagnostics, genes related 
to pathogenicity such as carbohydrate-degrading enzymes, 
fungal effector proteins, various secondary metabolites and 
toxins (Islam et al., 2012; McGrann et al., 2016; Juliana 
et al., 2018). The phylogenetic reconstructions based on 
the analysis of full genomes or at least large portions of 
them, have resulted in more robust phylogenies of various 
genera and higher level taxa of fungi (Kuramae et al., 2006; 
Luo et al., 2015; Whiston and Taylor, 2016). The genome 
data of representatives from the key foliar fungal groups, 
including Colletotrichum spp. (O’Conell et al., 2012), 
diaporthalean fungi (Wu et al., 2020), Dothideomycetes 
(Haridas et al., 2010), powdery mildews (Frantzeskakis 
et al., 2019), rusts (Hacquard et al., 2012; Gill et al., 
2019) and smuts (Benevenuto et al., 2018) are available 
from several recent studies. Thus, comparative genomic 
analyses have revealed essential information, which can 
be used to form epidemiological predictions, to understand 
host resistance and pathogen evolution related to potential 
outbreaks (Xue et al., 2012; Kuan et al., 2015). Overall, 
molecular systematics and genomics have significantly 
improved the present understanding of foliar pathogens, 
leading to accurate identification, disease surveillance and 
implementation of effective disease management. 

CONCLUSIONS

Globally, foliar diseases in plants are growing threats to 
agriculture, food security, biodiversity and the ecological 
balance of the natural environment. Pathogenic fungal 
species that cause foliar diseases are highly taxonomically 
diverse. Although some foliar pathogens only minorly 
impact plants, it is highly likely that a similar pathogen may 
cause destructive diseases, leading to regional and global 
threats. Therefore, emerging or invasive species of foliar 
pathogens should not be underestimated, especially when 
encountered on economically important hosts and new 
geographic regions. Evolutionary relationships inferred 
by molecular data, as well as understanding the disease 
epidemiology and genomics of the pathogens, provide 

information about disease spread, which necessitates 
predictions concerning potential outbreaks and epidemics. 
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