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a b s t r a c t

Traditional software reliability growth models enable quantitative assessment of the software testing
process by characterizing the fault detection in terms of testing time or effort. However, the majority
of these models do not identify specific testing activities underlying fault discovery and thus can
only provide limited guidance on how to incrementally allocate effort. Although there are several
novel studies focused on covariate software reliability growth models, they are limited to model
development, application, and assessment.

This paper presents a non-homogeneous Poisson process software reliability growth model incor-
porating covariates based on the discrete Cox proportional hazards model. An efficient and stable
expectation conditional maximization algorithm is applied to identify the model parameters. An
optimal test activity allocation problem is formulated to maximize fault discovery. The proposed
method is illustrated through numerical examples on two data sets.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Traditional software reliability growth models (SRGM) (Farr
and Smith, 1984) characterize the fault discovery process during
testing as a non-homogeneous Poisson process (NHPP). These
models predict future faults as a function of testing time or
effort, enabling inferences such as the number of faults remain-
ing, additional time required to achieve a specified reliability,
and optimization problems such as optimal release (Zhao and
Xie, 1993) and effort allocation (Fiondella and Gokhale, 2008).
However, the vast majority of these NHPP SRGM do not iden-
tify the underlying software testing activities that lead to fault
discovery. Thus, effort allocation based on these models can only
provide general guidance on the amount of effort to invest and
limited information regarding the effectiveness of specific testing
activities.

More recently, bivariate NHPP SRGM (Ishii et al., 2008) and
covariate models (Rinsaka et al., 2006), which are capable of
characterizing faults discovered as a function of multiple software
testing activities such as calendar time, number of test cases
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executed, and test execution time have been proposed. Covariate
models are an especially attractive alternative to testing effort
models (Yamada et al., 1986) because they only introduce a single
additional parameter per metric and do not require sequential
model fitting procedures, although covariate models still require
stable and efficient numerical methods. To realize the full po-
tential of covariate models, generalized optimization procedures
such as test activity allocation are needed to guide the distribu-
tion of limited resources among specific test activities in order to
maximize fault discovery, correction, and improved reliability.

Early metrics based models include the work of Khoshgof-
taar and Munson (1990), who performed regression analysis to
study the relationship between software complexity metrics and
the number of errors found during test and validation. Alterna-
tive estimation techniques to create linear models of software
quality (Khoshgoftaar et al., 1992b) were subsequently evalu-
ated. Khoshgoftaar et al. (1992a) also applied nonlinear regression
to model the relationship between software metrics and the
number of faults in a program module. Hudepohl et al. (1996)
implemented these methods in the Emerald (Enhanced Measure-
ment for Early Risk Assessment of Latent Defects) tool and applied
them to telecommunications software.

More recent covariate models include the work of Rinsaka
et al. (2006) combined the proportional hazards model and non-
homogeneous Poisson process to provide a generalized fault
detection process possessing time-dependent covariate struc-
ture. Shibata et al. (2006) subsequently extended this to a cumu-
lative Bernoulli trial process. Okamura et al. (2010) proposed a
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Nomenclature

Acronyms

AIC Akaike information criterion
BIC Bayesian information criterion
CM Conditional maximization
DW Discrete Weibull
DCPH Discrete Cox Proportional Hazards

model
EM Expectation maximization
ECM Expectation conditional maximization
NHPP Non-homogeneous Poisson process
SRGM Software reliability growth model
SRM Software reliability model
GM Geometric
LL Log-likelihood
MSE Mean square error
MLE Maximum likelihood estimation
NB Negative Binomial
RLL Reduced log-likelihood

Notation

M Indigenous faults in the software sys-
tem

i Discrete time
n Number of segments in given time

interval
B(•) Binomial distribution
m Number of trials
p Probability of success
ω Number of faults that would be de-

tected with indefinite testing
β Vector of Cox model parameters
θ Vector of model parameters
b Shape parameter
yi Number of faults detected at time i
xi

(
xi1, xi2, . . . , xip

)
;

The covariates associated with yi at
testing time i
The covariates are time dependent since
they depend on i

T The time to failure of a fault, assumed
i.i.d.

Fi,xi;θ,β Pr(T ≤ i); cdf of T at T = i in the
presence of xi

Si,xi;θ,β Pr(T > i); survival function of T at T = i
in the presence of xi

pi,xi;θ,β Pr(T = i) in the presence of xi
hi,xi;θ,β

Pr(T=i)
Pr(T≥i) =

pi,xi;θ,β

Si−1,xi−1;θ,β
; hazard function of

T at T = i in the presence of xi
F 0
i;θ Pr(T ≤ i); cdf of T at T = i at baseline
S0i;θ Pr(T > i); survival function of T at T = i

at baseline

multi-factor software reliability model based on logistic regres-
sion and an efficient algorithm to estimate the model param-
eters. Okamura and Dohi (2014) combined Poisson regression-
based fault prediction and generalized linear models (Okamura

p0i;θ Pr(T = i) at baseline

h0
i;θ

Pr(T=i)
Pr(T≥i) =

p0i;θ
S0i−1;θ

; hazard function of T at

T = i at baseline
ν Number of model parameters
Hn;ω,θ Mean value function

and Dohi, 2015) with metrics-based software reliability growth
models. Shibata et al. (2015) implemented these methods in the
M-SRAT (Metrics-based Software Reliability Assessment Tool).

Covariate models exhibit substantially improved prediction
capabilities over NHPP software reliability growth models. There-
fore, to enhance the utility of covariate models and encourage
their use in practice, this paper makes the following primary
contributions

• A software reliability growth model possessing a discrete
Cox proportional hazard rate to incorporate covariates. This
approach is analogous to the model introduced in Shibata
et al. (2006), which has been constructed based on a discrete
time model developed by Kalbfleisch and Prentice (1973).
However, formulation and estimation of our model takes
into account the fact that the counts of software faults
in disjoint intervals of the point process are independent
random variables possessing a Poisson distribution with
non-homogeneous rates, which is an assumption of a NHPP
by design.

• Efficient expectation conditional maximization (ECM) (Na-
garaju et al., 2017) algorithms to estimate the numerical
parameters of a model that best characterize the data.

• A generalization of the testing effort allocation problem (Ya-
mada et al., 1993) to covariate models referred to as the op-
timal testing activity allocation problem to (i) maximize fault
discovery within a budget constraint or (ii) minimize the
budget required discover a specified number of additional
faults.

The illustrations apply the model to two data sets from the
literature with the ECM algorithms and then solves the opti-
mal testing activity allocation problem. The results indicate that
periodic application of testing activity allocation could more ef-
fectively guide the type and amount of specific testing activities
throughout the software testing process in order to discover more
faults despite limited resources.

The remainder of the paper is organized as follows: Section 2
describes the mathematical formulation of the NHPP SRGM as
well as the discrete Cox proportional hazards model. Section 3
discusses proportional hazards modeling incorporating covariates
and formulates the optimal test activity allocation problem to
maximize fault discovery. Section 4 describes model estimation,
assessment, and selection. Section 5 illustrates the proposed ap-
proach on two data sets from the literature, while Section 6
provides conclusions and future research.

2. Point process based SRGMs

This section formulates the nonhomogenous Poisson process
software reliability growth model and Discrete Cox Proportional
Hazards (DCPH) model upon which the subsequent covariate
model is developed.

Software faults are detected at random discrete times, which
are consistent with the abrupt nature of software failures. Let
M be the number of faults within the software and Tj, j =
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1, 2, . . . ,M the time the jth fault is first discovered. The subscript
is not used further because it is assumed that the time to failure of
each fault is identically distributed. Moreover, let Pr(T = i) = pi,
i = 1, 2, . . . , n, where i refers to the (discrete) time at which the
software fails. Furthermore, it is also possible that more than one
software fault is detected in a discrete unit of time.

Like the majority of NHPP SRGM it is assumed that (i) software
failures are independent from one another and (ii) faults detected
are removed immediately without introducing additional faults
and no new faults are introduced.

2.1. Binomial process based SRGMs

Let Yi be the number of faults detected at time i such that
Sn =

∑n
i=1 Yi is the total number of faults detected through the

first n intervals. Denoting the binomial distribution with m trials
and success probability p

B(n;m; p) =

(
m
n

)
pn (1 − p)m−n (1)

For fixed M , the distribution of Sn is

Pr(Sn = y) = B(n)(y;M; pn)

=

y∑
j=0

B(n−1)(j;M; pn−1) ×

B(y − j;M − j; pn) (2)

= B(y;M; 1 −

n∏
i=1

p̄i) (3)

with mean

E
[
Sn
]

= M
(
1 −

n∏
i=1

p̄i
)

(4)

where p̄ = 1 − p and

pn = (p1, p2, . . . , pn)T . (5)

Eq. (2) can be explained by dividing an interval of time into n
segments and applying the binomial theorem to two segments of
length n−1 and 1 respectively. Eq. (3) follows from an induction
argument using the convolution of two binomial distributions. It
also follows intuitively from the observation that 1−

∏n
i=1 p̄i is the

probability that at least one failure occurs in any of the n discrete
time intervals.

2.2. NHPP based SRGMs

In this section we discuss NHPP based models that have been
introduced in the literature to model software faults.

2.2.1. Discrete NHPP SRGMs
Allowing M to follow a Poisson distribution with mean ω

such that Pr(M = k) = ωk e−ω

k! provides the NHPP SRGM with
distribution

Pr(Sn = y) =

(
ω(1 −

∏n
i=1 p̄i)

)y
y!

exp

(
−ω

(
1 −

n∏
i=1

p̄i

))
(6)

where alternative values for ω produce different NHPP SRGMs.

2.2.2. Standard NHPP model
The standard NHPP model (Lyu, 1996), which is used to model

software faults differs from the model discussed in Section 2.2.1.
In the standard approach, instead of dealing with the individ-
ual probabilities Pr(T = i) = pi, we consider the cumulative
probability Fi = Pr(T ≤ i). Then, for fixed M ,

Pr(Sn = y) =

(
M
y

)
F y
n F̄M−y

n (7)

and, mixing with a Poisson distribution with mean ω gives

Pr(Sn = y) =
(ωFn)y

y!
exp(−ωFn). (8)

Comparing Equation (6) with (8) shows that the two NHPP mod-
els are not the same since

1 −

n∏
i=1

p̄i ̸= Fn =

n∑
i=1

pi. (9)

Now, note that discrete time hazard function at a certain time
point i is defined as

hi = Pr(T = i|T > i − 1)
= Pr(T = i|T ≥ i). (10)

With some basic algebra it can be shown that the probability of
T = i can be expressed as a function of hazards as

Pr(T = i) = pi = hi

i−1∏
j=1

(1 − hj). (11)

Note that Eq. (11) possesses the natural interpretation that a
fault detected in interval i with probability pi, must have escaped
detection in intervals j = 1, 2, . . . , i−1 with hazard rate h̄(j) and
is detected at time i with hazard rate hi. By Eqs. (10) and (11) we
then have that the corresponding discrete time survival function
at time point i is

Si = P(T > i) =

i∏
j=1

(1 − hj) = exp

⎧⎨⎩
i∑

j=1

ln(1 − hj)

⎫⎬⎭ . (12)

Note that if we set pi = hi in the discrete SRGM, Eq. (6) reduces
to the standard SRGM case Eq. (8). This is the only case where
equality in Eq. (9) holds, since

1 −

n∏
i=1

p̄i = 1 −

n∏
i=1

h̄i

= 1 −

n∏
i=1

(1 − hi)

= 1 − Sn = Fn, (13)

producing the equality in Eq. (9). Therefore, the standard SRGM
given in Eq. (6) implicitly assumes the discrete hazard function
as the fault-detection probability.

3. Proportional hazards modeling incorporating covariates

This section describes the formulation of a discrete Cox pro-
portional hazards model incorporating covariates.

Testing occurs in discrete intervals i = 1, 2, . . . , n. An NHPP
software reliability model assumes that the point process pos-
sesses independent Poisson distributed increments. In other
words, the numbers of faults detected over these n disjoint
time intervals are independent. Suppose that we are interested
in investigating the effect of p software test activities on fault
detection. We denote the vector of software test activities in the
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ith testing interval by xi = (xi1, xi2, . . . , xip) for i = 1, 2, . . . , n.
We will also redefine our notations noting the dependence of
the functions on the parameters of the distribution of T (de-
noted θ ) and coefficients of the p software test activities in the
model (denoted β =

(
β1, β2, . . . , βp

)T), which must either be
estimated using data or assigned values. Here test activities are
any tool, technique, or procedure to detect software defects. Some
examples include code reviews and interactive debugging.

The Cox proportional hazards model for a discrete process
(Shibata et al., 2006) is

hi,xi;θ,β = 1 − (1 − h0
i;θ )

g(xi;β), (14)

for each i = 1, 2, . . . , n, where h0
i;θ is known as the baseline

hazard function and it is usual to assume that

g(xi; β) = exp(β1xi1 + β2xi2 + · · · + βpxip). (15)

Proof. From the definition of the discrete time hazard function
given in Eq. (10)

1 − hi,xi;θ,β =
Si,xi;θ,β

Si−1,xi−1;θ,β

=

(
S0i;θ

S0i−1;θ

)g(xi;β)

(16)

However, 1 − h0
k;θ =

S0k;θ
S0k−1;θ

. Therefore, Eq. (16) is equal to

1 − hi,xi;θ,β = (1 − h0
i;θ )

g(xi;β) (17)

and Eq. (14) follows ■.

From Eq. (17),

n−1∏
k=1

(1 − h0
k;θ )

g(xk;β)
=

n−1∏
k=1

(
1 − hk,xk;θ,β

)
=

n−1∏
k=1

Sk,xk;θ,β

Sk−1,xk−1;θ,β

= Sn−1,xn−1;θ,β (18)

so that

pi,xi;θ,β = hi,xi;θ,βSi−1,xi−1;θ,β

=
(
1 − (1 − h0

i;θ )
g(xi;β)

) i−1∏
k=1

(1 − h0
k;θ )

g(xk;β) (19)

follows from Eqs. (11), (14) and (18).
The Cox model incorporates covariates x into the hazard rate

and therefore assesses the effects they may have on fault de-
tection. If the faults are assumed to be Poisson distributed, then
a likelihood analysis can be performed using data available for
estimation. Hence, it is possible to infer the effect of a covariate
on faults despite the presence of multiple covariates.

Mean value function
The mean number of faults detected through the nth

interval is

Hn;ω,θ,β = ω

n∑
i=1

pi,xi;θ,β (20)

3.1. Baseline hazard functions

The baseline hazard function in discrete time interval i pos-
sessing parameters θ is

h0
i;θ =

p0i,θ
S0i−1,θ

(21)

where p0.,θ and S0.,θ = 1 − F 0
.,θ respectively denote the baseline

probability mass function and survival function of the discrete
time distribution T at the baseline levels of software test activities
in the model. Specific hazard functions including the geometric,
negative binomial, and discrete Weibull are given below and can
be substituted into Eq. (19) to obtain various Cox proportional
hazards models.

3.1.1. Geometric (GM)

h0
i;b = b (22)

where b is the probability of detecting a fault and hence, b ∈

(0, 1).

3.1.2. Negative binomial of order two (NB)

h0
i;b =

ib2

1 + b(i − 1)
(23)

where b ∈ (0, 1) and 2 indicates the order.

3.1.3. Discrete Weibull of order two (DW)

h0
i;b = 1 − bi

2
−(i−1)2 (24)

where b ∈ (0, 1) and 2 indicates the order.

3.2. Optimal test activity allocation to maximize fault discovery

Similar to the concept of effort allocation (Yamada et al., 1986)
in NHPP software reliability growth models, it is possible to em-
ploy covariate models to guide resource allocation. Generalization
of the testing effort concept to covariate models, requires division
of resources across multiple activities, each of which possesses
and effectiveness characterized by the parameter βi but may also
impose unique cost and time requirements. Examples of activities
associated with traditional software reliability testing include al-
ternative black-box testing methods (Ammann and Offutt, 2016),
with costs characterized by the hourly rates charged by skilled
employees or consultants, whereas examples in the context of
software security testing include traditional software reliability
testing methods relevant to security as well as static and dynamic
testing tools and techniques for exposing vulnerabilities.

Given n intervals of observed data and a budget of B re-
sources to allocate to r activities (covariates), maximizing the
total number of faults or vulnerabilities detected, so that they can
be corrected prior to release is formulated as

argmax Ĥ(n+1);ω,θ,β (25)

subject to
r∑

j=1

cjxj,(n+1) ≤ B

cj
(
xj,(n+1) − xj,(n)

)
= Bj ≥ 0

where cj > 0 is the cost associated with an additional unit of
activity j. In practice, the model can be fit to data from the first
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i intervals and Eq. (25) solved based on the maximum likeli-
hood estimates of the model and the budget to be allocated on
activities during interval (i + 1).

Alternatively, an individual may wish to expose a specified
number of additional faults or vulnerabilities with the smallest
budget possible, which is formulated as

argmin
∑

cjxj (26)

subject to

Ĥ(n+1);ω,θ,β − Ĥn;ω,θ,β ≥ k

βj+1 − βj ≥ 0

where the first constraint ensures that the predicted number
of additional faults or vulnerabilities is greater than k and the
second constraint requires that each test activity allocation is
nonnegative.

4. Model estimation, assessment, and selection

This section describes model estimation, assessment, and se-
lection methods. Estimation methods include maximum likeli-
hood estimation (MLE) and the expectation conditional maxi-
mization (ECM) algorithm as well. An example derivation of the
ECM update rules is provided in the context of the geometric haz-
ard function. Initial parameter estimation, measures of goodness
of fit, and model selection are also discussed.

4.1. Maximum likelihood estimation

For the purpose of estimation and inferential procedures, the
likelihood function of the process needs to be constructed. The
likelihood function is merely the joint distribution of the sample
of observed values. In this case, the observed values are data:
(yi, xi, i = 1, 2, . . . , n) where n is the number of testing intervals.
As mentioned in Section 3, an NHPP software reliability model
assumes that the point process possesses independent Poisson
distributed increments. In other words, the number of faults de-
tected over these disjoint time intervals are independent. Hence,
the likelihood function of the NHPP SRGM given in Eq. (19) is

L(θ, β, ω) = Pr (Y1 = y1, Y2 = y2, . . . , Yn = yn)

=

n∏
i=1

exp
(
−ωpi,xi;θ,β

) (ωpi,xi;θ,β

)yi
yi!

= exp

(
−ω

n∑
i=1

pi,xi;θ,β

)
ω
∑n

i=1 yi

n∏
i=1

pyii,xi;θ,β

yi!
, (27)

and the corresponding log-likelihood function

LL(θ, β, ω) = −ω

n∑
i=1

pi,xi;θ,β +

n∑
i=1

yi ln(ω) (28)

+

n∑
i=1

yi ln(pi,xi;θ,β) −

n∑
i=1

ln(yi!)

incorporates the covariates xi through pi,xi;θ,β . The maximum
likelihood estimates of the model parameters can be obtained by
solving ∂ l

∂ω
= 0, ∂ l

∂θ
= 0, and ∂ l

∂βj
= 0, j = 1, 2, . . . , p.

4.2. Expectation conditional maximization algorithm

This section describes the expectation conditional maximiza-
tion (Nagaraju et al., 2017; Zeephongsekul et al., 2016) algorithm
to identify the maximum likelihood estimates of a model.

The steps to obtain the CM steps of the ECM algorithm of a
covariate based NHPP SRGM are as follows:

• (S.1) Step one specifies the log-likelihood function, as de-
scribed in Eq. (28).

• (S.2) Step two reduces the log-likelihood function from ν

to (ν − 1) parameters by differentiating the log-likelihood
function with respect to ω, equating the result to zero, and
solving for ω to produce

ω̂ =

∑n
i=1 yi∑n

i=1 pi,xi;θ,β

, (29)

which is then substituted into the log-likelihood function to
obtain the reduced log-likelihood (RLL) function.

• (S.3) Step three derives the conditional maximization steps
for the remaining (ν − 1) parameters by computing partial
derivatives
∂RLL
∂θ

= 0 (30)

and
∂RLL
∂β

= 0 (31)

where θ denotes all parameters except ω and β denote
coefficients related to all p covariates.

• (S.4) Step four cycles through the (ν − 1) CM-steps holding
the other (ν −2) parameters constant, applying a numerical
root finding algorithm to determine the maximum likeli-
hood estimates θ̂/ω. This process continues until a user
specified convergence criterion is achieved.

• (S.5) Step five computes the MLE of ω by substituting the
estimates of θ and β into Eq. (29), producing the MLE for all
ν parameters of the model.

Steps (S.1) through (S.5) can be applied to different hazard
functions introduced in Section 3.1. Step (S.4) reduces a (ν − 1)-
dimensional problem to (ν − 1) single-dimensional problems,
enabling the application of a stable numerical method in each
CM-step. Coupled with the monotonicity of the ECM algorithm,
this ensures convergence to the maximum likelihood, which is
especially important in an open source implementation (Nagaraju
et al., 2019).

4.3. Geometric model

This section illustrates the derivation of CM steps in the con-
text of the geometric distribution possessing a single covariate.
Toward this end, step (S.1) substitutes the hazard function for a
geometric model (Eq. (22)) and Eq. (19) into Eq. (28), producing

LL(ω, b, β) = −ω

n∑
i=1

((
1 − (1 − b)e

xiβ
) i−1∏

k=1

(1 − b)e
xkβ

)

+ log(ω)
n∑

i=1

yi −
n∑

i=1

log(yi!) +

n∑
i=1

(
yi

log

((
1 − (1 − b)e

xiβ
) i−1∏

k=1

(1 − b)e
xkβ

))
. (32)
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Step (S.2) differentiates Equation (32) with respect to ω and
solves for ω to provide

ω̂ =

∑n
i=1 yi∑n

i=1

((
1 − (1 − b)exiβ

)∏i−1
k=1(1 − b)exkβ

) (33)

and the reduced log-likelihood function is obtained by substitut-
ing Equation (33) into Eq. (32)

RLL(b, β) = −

n∑
i=1

yi −
n∑

i=1

log(yi!) +

n∑
i=1

(yi) log

⎛⎝ n∑
i=1

yi

1∑n
i=1

((
1 − (1 − b)exiβ

)∏i−1
k=1(1 − b)exkβ

)
⎞⎠

+

n∑
i=1

(
yi log

((
1 − (1 − b)e

xiβ
)

i−1∏
k=1

(1 − b)e
xkβ

))
(34)

Step (S.3) differentiates Equation (34) with respect to b and β
to produce

b′′
:=

−(1 − b′′)−1+
∑n

i=1 exiβ
′ ∑n

i=1 e
xiβ ′ ∑n

i=1 yi

1 − (1 − b′′)
∑n

i=1 exiβ
′

+
1

1 − b′′

(
n∑

i=1

(
yiexiβ

′

(1 − b′′)e
xiβ

′

1 − (1 − b)exiβ
′

)

−

n∑
i=2

(
yi

i−1∑
k=1

exkβ
′

))
(35)

and

β ′′
:=

(1 − b′)
∑n

i=1 exiβ
′′ ∑n

i=1 yi
∑n

i=1

(
xiexiβ

′′
)

1 − (1 − b′)
∑n

i=1 exiβ
′′

log(1 − b′) +

(
n∑

i=1

((
1 −

1

1 − (1 − b′)exiβ
′′

)

yixiexiβ
′′

+ xiexiβ
′′

n∑
k=i−1

yk

))
log(1 − b′) (36)

which are the CM steps of the ECM algorithm.
Step (S.4) applies Eqs. (35) and (36) to respectively update

parameters b′′ and β ′′ in alternating iterations.

4.4. Initial parameter estimation

The initial parameter estimates (Okamura et al., 2003) of pa-
rameter ω is

ω(0)
= n (37)

The remaining parameters of the distribution function F (•; θ )
in Eq. (8) are computed as

θ (0)
:=

n∑
i=1

∂

∂θ
log [f (; θ, β)] = 0. (38)

For example, the initial estimates of the geometric model
possessing a single covariate determined from Eq. (38) are

b(0) = 1 − e

(
−n∑n

i=1 exiβ+
∑n

i=1
∑i−1

k=1 exkβ

)
(39)

and

β (0)
= −n

(
n∑

i=1

xi + log(1 − b)

(
n∑

i=1

(xi)exiβ
(0)

+

n∑
i=1

i−1∑
k=1

(
xkexkβ

(0)
)))−1

(40)

Here, β (0) lacks a closed form expression and a numerical value
of b(0) cannot be determined unless β (0) possesses a numerical
value. Therefore, Eq. (39) can be substituted into (40) and solved
for β (0) numerically. The numerical value of β (0) is subsequently
substituted into Eq. (39) to obtain the initial estimate of b(0).
Alternatively, β (0) can be held constant at 0, which simplifies to
the case of no covariates.

4.5. Goodness of fit measures

This section summarizes some goodness of fit measures to
assess how well a model characterizes a failure data set. A sim-
ple method based on multiple goodness of fit measures is also
covered to discourage poor statistical practices such as relying
solely on measures of in sample goodness of fit as opposed to
a combination of predictive accuracy and information theory.

4.5.1. Akaike information criterion
The Akaike Information Criterion (Fiondella and Gokhale, 2011)

is an information theoretic measure of a model’s goodness of
fit. The AIC quantifies the tradeoff between model precision and
complexity. The AIC of model i is a function of the maximized
log-likelihood and the number of model parameters (ν).

AICi = 2ν − 2LL(xi; ω̂, θ̂ , β̂) (41)

The term 2ν of Eq. (41) is a linearly increasing penalty function
for the number of parameters, while LL(xi; ω̂, θ̂ , β̂) is the log-
likelihood function of failure data with covariates xi evaluated at
the maximum likelihood estimate. Model j preserves information
better than model i and is preferred with statistical significance
if AICi,j = AICi − AICj > 2.0 (Sakamoto et al., 1986).

4.5.2. Bayesian information criterion
The Bayesian information criterion of model i is a function

of the maximized log-likelihood, number of model parameters ν,
and the sample size n

BICi = −2LL(xi; ω̂, θ̂ , β̂) + ν log(n) (42)

The penalty term of the BIC is therefore proportional to the num-
ber of parameters ν multiplied by the logarithm of the sample
size n.

4.5.3. Sum of Squares Error (SSE)
The sum of squares error, also known as the residual sum of

squares, for failure count data is

SSE =

n∑
i=1

(Ĥi;ω,θ,β − Yi)2 (43)

where Yi =
∑i

j=1 yj is the cumulative number of faults observed
in the first i time intervals.
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Fig. 1. ECM Iterations of covariate model with geometric hazard function applied to F covariate of DS2 data set.

Fig. 2. Log-likelihood of covariate model with geometric hazard function applied to F covariate of DS2 data set.

4.5.4. Predictive Sum of Squares Error (PSSE)
PSSE compares the predictions of a model with data not used

to perform model fitting. The predictive sum of squares error for
failure count data is

PSSE =

n∑
i=n−ℓ+1

(Ĥi;ω,θ,β − Yi)2 (44)

where the maximum likelihood estimates of the model parame-
ters are determined from the first n − ℓ intervals.

4.5.5. Model selection based on multiple goodness of fit measures
This section presents a simple method based on the critic

method (Diakoulaki et al., 1995) to select a model given multiple
goodness of fit measures.

Given n models and m measures, Let fi,j be the jth measure
for the ith model. Each measure is assigned a normalized score
according to

xi,j =
fi,j − f +

j

f −

j − f +

j
(45)

where f +

j and f −

j respectively denote the best and worst values of
a measure j across all models. Thus, xi,j indicates how close the jth
measure of model i is to the ideal. One method to select a model
is to compute the median of each model’s normalized scores
and recommend the model with the highest value. Alternatively,
model selection can be based on the average of each model’s
normalized scores. The critic method, as described here, is a spe-
cial case of the Analytic Hierarchy Process (AHP) (Li et al., 2006),

where weights can be assigned to individual measures based on
subjective properties such as relevance and past experience.

5. Illustrations

This section demonstrates the model, ECM algorithm, and
optimal covariate allocation. The DS1 and DS2 data sets (Shibata
et al., 2006) respectively consisting of n = 17 and n = 14 weeks
of observations are employed. Both data sets possess three covari-
ates, including execution time (E) in hours, failure identification
work (F) in person hours, and computer time failure identification
(C) in hours. Here, F may indicate activities such as code reviews,
where one or more programmers read but did not execute code,
whereas C may indicate activities where programmers tested the
code and debugged interactively.

The first example graphically illustrates the application of the
ECM algorithm to a model with a single covariate. The second
example compares goodness of fit measures attained by the ge-
ometric, Weibull, and negative binomial models on all possible
subsets of covariates contained in the DS1 and DS2 data sets. The
final example assesses optimal effort allocation.

5.1. Application of ECM algorithm to covariate NHPP SRGM

Fig. 1 shows the contour plot of the log-likelihood function
of data set DS2 for the model with geometric hazard function
in Eq. (22) and F covariate. The CM steps made by applying
Eqs. (35) and (36) of the ECM algorithm are superimposed. The
initial estimate b(0) = 0.124827 was determined with Eq. (39)
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Fig. 3. Fit of covariate model with geometric hazard function applied to F covariate of DS2 data set.

Table 1
Goodness of fit measures for geometric hazard function model on DS1 and DS2.
β ν DS1 DS2

LLF AIC BIC SSE PSSE LLF AIC BIC SSE PSSE

– 2 −41.47 86.94 88.60 433.73 0.25 −29.38 62.76 64.03 45.04 3.16
E 3 −36.13 78.25 80.75 187.00 5.79 −24.93 55.86 57.78 80.29 12.56
F 3 −31.21 68.43 70.93 120.12 27.41 −23.29 52.58 54.51 49.61 10.22
C 3 −35.54 77.09 79.59 219.15 4.34 −24.33 54.65 56.57 44.25 14.06
EF 4 −30.03 68.05 71.38 73.41 17.35 −23.27 54.54 57.11 54.24 9.98
FC 4 −30.89 69.79 73.12 128.25 85.20 −23.01 54.03 56.58 48.63 12.40
EC 4 −30.08 68.16 71.49 48.25 2.35 −24.09 56.19 58.74 61.53 14.37
EFC 5 −28.40 66.81 70.97 36.95 32.99 −23.00 56.01 59.21 45.77 11.58

by holding β (0)
= 0.0. Fig. 1 shows the ECM algorithm reaches

the maximum likelihood estimates b̂ = 0.0729392 and β̂ =

0.0589373. Substituting these values into Eq. (33) produces the
MLE of ω̂ = 42.6185.

Fig. 2 shows the monotonic increase in log-likelihood attained
by the ECM algorithm with CM-steps. Odd steps at 0.5, 1.5, and
so on correspond to updates to b̂, while even steps correspond to
β̂ .

Fig. 3 shows the DS2 data accompanied by the fit of the model
with geometric hazard function to F covariate. The sum of squares
error computed from Eq. (43) is 49.6143.

5.2. Goodness of fit model assessment

This section systematically compares the models with geo-
metric, negative binomial, and discrete Weibull hazard functions
considering all eight possible combinations of three covariates in
data sets DS1 and DS2.

Table 1 summarizes the goodness of fit of the geometric haz-
ard rate function for each possible combination of covariates,
requiring ν parameters. Preferred combinations of covariates with
respect to the LLF, AIC, BIC, SSE, and PSSE are indicated in bold.
While the model fit using all three covariates achieves the highest
log-likelihood value on both data sets, AIC only prefers EFC on
DS1, whereas the F covariate is preferred by AIC and BIC in all
other cases. For DS1, however, the BIC of EFC and F are close,
suggesting that EFC may be preferred for DS1 if both AIC and BIC
are taken into consideration. The SSE and PSSE provide conflicting
results. Specifically, SSE prefers all three covariates on DS1 and
C covariate on DS 2, whereas PSSE is lowest for a model with
no covariates on both data sets. However, some combinations of
one or more covariate also attain a relatively low SSE and PSSE,
suggesting that practical model selection (Sharma et al., 2010)
requires a tradeoff between information theoretic and predictive
measures of goodness of fit.

Tables 2 and 3 provide similar analysis of the negative bino-
mial and discrete Weibull hazard rates. For each combination of
hazard function and data set, both the AIC and BIC prefer the same
covariates, but do not consistently agree with the other measures.
Considering all three models, both AIC and BIC recommend the
NB model with F covariate for DS1 and the GM model with F
covariate for DS2, whereas results based on SSE prefer NB with
three covariates for both data sets, whereas PSSE recommends
GM with no covariates when all three models are considered.

Since no model performs best on all measures in Tables 1–3,
we apply the model selection method based on multiple goodness
of fit measures. Table 4 reports the normalized values of the mea-
sures for the geometric hazard function model on DS1, computed
with Eq. (45) and the values given in Table 1.

Table 4 indicates that the measures produced by covariates
EFC attain the highest median while covariates EC perform best
with respect to the mean of these measures.

Table 5 summarizes the results of applying the model selec-
tion method based on multiple goodness of fit measures con-
sidering all 24 combinations of three hazard functions and eight
covariates.

For both data sets, the same hazard function achieves the top
three ranks. Specifically, the negative binomial hazard function
with F covariate is recommended for DS1, followed by the EF and
EFC combinations of covariates. Similarly, the geometric hazard
function with F covariate is recommended for DS2.

5.3. Optimal test activity allocation

This section illustrates optimal test activity allocation formu-
lated in Section 3.2 in the context of the negative binomial model
on DS1. For the sake of illustration, the negative binomial model
was fit to each combination of covariates with from the first
n − 1 intervals. The amount of effort originally allocated in the
nth interval of DS1 was E = 7.6, F = 24, and C = 8. Thus,
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Table 2
Goodness of fit measures for negative binomial hazard function model on DS1 and DS2.
β ν DS1 DS2

LLF AIC BIC SSE PSSE LLF AIC BIC SSE PSSE

– 2 −36.41 76.82 78.49 208.35 3.99 −30.56 65.12 66.40 104.46 7.89
E 3 −32.31 70.62 73.12 70.16 3.16 −28.06 62.12 64.04 134.35 14.09
F 3 −28.80 63.60 66.10 25.94 1.16 −25.73 57.46 59.38 106.88 14.05
C 3 −31.96 69.91 72.41 81.73 11.12 −26.81 59.61 61.53 102.88 16.13
EF 4 −28.05 64.11 67.44 18.33 0.96 −25.52 59.03 61.59 86.55 13.52
FC 4 −28.37 64.75 68.08 20.77 2.19 −25.59 59.19 61.75 107.53 15.45
EC 4 −28.97 65.95 69.28 33.02 10.18 −26.78 61.57 64.12 95.15 16.06
EFC 5 −27.29 64.58 68.74 11.89 2.44 −25.00 60.00 63.20 65.26 14.74

Table 3
Goodness of fit measures for discrete Weibull hazard function model on DS1 and DS2.
β ν DS1 DS2

LLF AIC BIC SSE PSSE LLF AIC BIC SSE PSSE

– 2 −35.37 74.74 76.41 136.55 18.82 −37.29 78.59 79.87 302.94 12.93
E 3 −33.20 72.40 74.90 122.82 18.46 −36.43 78.86 80.78 357.39 15.86
F 3 −29.47 64.94 67.44 41.52 10.41 −33.40 72.80 74.71 361.65 16.71
C 3 −33.04 72.08 74.58 111.59 21.22 −34.61 75.23 77.14 350.60 17.51
EF 4 −29.20 66.41 69.74 53.55 10.80 −31.34 70.68 73.24 216.38 16.01
FC 4 −29.28 66.56 69.89 39.76 12.16 −33.34 74.68 77.23 365.66 17.31
EC 4 −31.42 70.83 74.16 120.59 20.83 −33.64 75.28 77.83 248.60 7.72
EFC 5 −28.91 67.83 71.99 54.70 12.86 −29.87 69.74 72.93 138.64 16.82

a budget of B = 39.6 resources were allocated to each subset
of covariates. Moreover, covariates were assumed to all possess
unit cost (ci = 1.0), but the formulation in Section 3.2 is capable
of considering non uniform costs.

Table 6 lists each combination of one or more covariate, the
estimated number of faults that would occur with optimal al-
location (Ĥ∗

n;ω,θ,β ) using Eq. (25), and the percent of the budget
allocated to the available covariates.

Table 6 indicates that optimal allocation of effort to the model
with all three covariates dedicates 38.03% of the budget to activity
E and the remaining 61.97% to activity C, which respectively
correspond to 15.06 and 24.54 units of the original budget. The
estimated number of faults is 1.55, whereas allocating effort
according to the nth interval of DS1 (E = 7.6, F = 24, and
C = 8) estimates only 0.92 faults. These results suggest that
optimal allocation could expose nearly 1.7 times as many faults,
indicating allocation could have conserved significant resources.
For the sake of comparison, we increased the allocations reported
in the nth interval by a common factor greater than one until the
number of faults estimated was equal to the optimal allocation.
That is, each of the three covariates was multiplied by the same
factor until 1.55 faults were achieved. It was determine that a
total budget of 79.2 (about two times as much effort) would be
required to identify the same number of faults as the optimal
allocation strategy.

It should be noted that in all cases, these are model predic-
tions. Therefore, the possibility of exposing the number of faults
identified by effort allocation will depend on a model’s predictive
accuracy. Since the model selection method based on multiple
goodness of fit measures recommended the negative binomial
hazard function with F covariate for DS1, it may be reasonable
to allocate the entire budget to F. However, it is not possible to
go back in time to recommend effort allocation during the nth
interval to determine if the optimal allocation would have actu-
ally exposed more faults, indicating that application of covariate
models to ongoing projects will be essential to improving their
usability in practice.

Fig. 4 studies the sensitivity of test activity allocation to a
budget in the interval B ∈ (10, 100).

Fig. 4 indicates that the effort allocated to the covariates con-
verges asymptotically to slightly less than 60%, 40%, and 10% for
covariates C, E, and F respectively. This occurs because the mean

Table 4
Normalized measures for geometric hazard function model on DS1.

– E F C EF FC EC EFC

LLF 0.00 0.41 0.79 0.45 0.88 0.81 0.87 1.00
AIC 0.00 0.43 0.92 0.49 0.94 0.85 0.93 1.00
BIC 0.00 0.44 1.00 0.51 0.97 0.88 0.97 0.99
SSE 0.00 0.62 0.79 0.54 0.91 0.77 0.97 1.00
PSSE 1.00 0.94 0.68 0.95 0.79 0.00 0.98 0.62

Median 0 0.44 0.79 0.51 0.91 0.81 0.97 1.00
Mean 0.2 0.57 0.84 0.59 0.91 0.66 0.94 0.92

Table 5
Top combinations of hazard functions and covariates.
Method DS1 DS2

1 2 3 1 2 3

Median NB (F) NB (EF) NB (EFC) GM (F) GM (FC) GM (EF)
Mean NB (F) NB (EF) NB (EFC) GM (F) GM (EF) GM (FC)

Table 6
Optimal covariate effort allocation to DS1 with negative binomial hazard
function.
β Ĥ∗

n;ω,θ,β %E %F %C

E 6.63 100 – –
F 2.61 – 100 –
C 0.41 – – 100
EF 5.30 100 – –
FC 1.97 – 5.70 94.30
EC 0.62 40.75 – 59.25
EFC 1.55 38.03 – 61.97

value function estimates a finite number of faults and therefore
a finite number of faults detectable by the different covariates.

To explain the asymptotic trend in Figs. 4, 5 shows the
marginal utility of allocating effort to just one of the three
covariates.

The vertical lines indicate the budget allocated to the model
with three covariates in Table 6, namely 15.06 units to covariate
E and 24.54 to covariate C. Covariate F is the least responsive
to effort, explaining why the optimal test activity allocation is
divided between the other two covariates.
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Fig. 4. Sensitivity of optimal test activity allocation to budget.

Fig. 5. Marginal utility of NB on DS1.

Fig. 6. Optimal test activity allocation to expose k additional faults.

Similarly, the alternative optimization formulation to mini-
mize the budget required to expose k additional faults is illus-
trated by solving Eq. (26) in the context of the negative binomial
model on DS1. Fig. 6 shows the budget required to expose one
to four additional faults according to the model fit to the first
15 intervals. The dashed horizontal line corresponds to the 44.2
units of effort allocated in the 16th interval of DS1, which exposed
two additional faults. Fig. 6, indicates that the optimal allocation
to expose three additional faults is predicted to be 40.64. Thus,
Eq. (26) may enable more efficient test resource allocation.

6. Conclusions and future research

This paper presents a covariate software reliability growth
model and formulates the optimal test activity allocation problem
to maximize fault discovery despite budget constraints or mini-
mize the budget required to discover a specified number of faults.
Expectation conditional maximization algorithms were derived
and applied to two data sets from the literature. The optimal
test activity allocation problem was then solved to illustrate how
it can increase the number of faults discovered by distributing
limited testing resources among the testing activities performed.
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Possible directions for future research include: (i) the develop-
ment of additional optimization problems for covariate models to
guide activities during the testing process and (ii) industrial case
studies to assess the relative effectiveness of alternative activities.
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