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• Metal release of electrical industrial
sludge via acid leaching has been stud-
ied.

• Efficiency of leaching depends on the
characteristics of sludge and the acid
type.

• Metal release from sludge is facilitated
by proton- and ligand-promoted mech-
anisms.

• Inorganic acids containing ligands can
increase the leaching efficiency of
metals.
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In this paper, we investigate the release of heavy metals from sludge produced from an electrical industry using
both organic and inorganic acids. Single and sequential extractions were conducted to assess heavy metals in dif-
ferent phases of the sludge.Metal release from sludgewas investigated in the presence of three inorganic acids (ni-
tric, sulfuric, and phosphoric) and three organic acids (acetic, malic, and citric) at concentrations ranging from 0.1
to 2.0 mol L−1. Sequential extraction indicated the presence of Cu primarily in the carbonate fraction, Pb in the re-
sidual fraction, and Ni in the Fe\\Mn oxide fraction. The cumulative release rates of heavy metals (i.e., Pb, Cu, and
Ni) by 1.0 mol L−1 of acid increased with the use of the following acids in the order of: malic b sulfuric b acetic b
phosphoric b citric b nitric. Acetic acid exhibited the highest release of Cu, at a rate of 72.62 ×10−11molm−2 s−1 at
pH 1, and malic acid drove the release of Pb at a maximum rate of 3.90 × 10−11 mol m−2 s−1. Meanwhile, nitric
acid provided themaximum rate of Ni release (0.23 × 10−11 mol m−2 s−1) at pH 1. The high rate of metal release
by organic acids is explained through ligand-promoted mechanisms that enhance the release of metal ions from
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the sludge. The results from our study emphasize that an understanding of the metal release mechanism is key to
selecting the optimal acid for the maximum recovery of heavy metals.

© 2019 Published by Elsevier B.V.
Pollution mitigation
Industrial waste
1. Introduction

The accelerated development of industries has contributed to in-
creased generation of contaminants-containing waste. For example,
the electrical appliance industry is known to produce large amounts of
waste that contain heavy metals (Hossain et al., 2015; Pérez-Belis
et al., 2015; Terazono et al., 2006). However, among various types of in-
dustrial waste, sludge has been recognized as one of the most challeng-
ing to treat (Barakat, 2011; Ghorpade and Ahammed, 2017; Ried, 1988;
Tsai et al., 2009). Most of the industrial sludge types are resistant to bio-
degradation as a result of their low solubility, non-optimal C/N ratio,
and presence of high amounts of toxic heavy metals (Azbar et al.,
2008). Therefore, landfill disposal is most widely used to handle indus-
trial sludge, although it is not an environmentally friendly approach
(Huyen et al., 2016). Nevertheless, anaerobic and aerobic digestion, vac-
uum filtration, elutriation, use of drying beds and sludge lagoons, wet
combustion, atomized suspension, drying and incineration, and centri-
fugation are widely practiced treatment methods that involve reducing
the quantity of final sludge prior to disposal into the ocean (sludge barg-
ing) or sanitary landfills (Nemerow, 2010; Al-Harahsheh et al., 2018;
Lobato et al., 2015). As an example, galvanic sludge, which is generally
produced by the precipitation of rinsing water and spent electrolytes
in electrical and electroplating industries, exceeds 1,000,000 metric
tons of global waste generation per year (Silva et al., 2008; Ghorpade
and Ahammed, 2017). Industrial sludge contains elevated concentra-
tions of heavy metals, particularly Cr, Ni, Zn, Cu, and Pb (Cui et al.,
2010). The release of heavy metals into the natural environment
through the direct disposal of non-treated or partially treated industrial
waste may contribute to human and ecosystem health risks (Tou et al.,
2017; Pecht et al., 2018). Therefore, selecting a proper method to treat
industrial sludge before disposal is mandatory.

The increasing global demand for metals makes metal recovery
from readily-available and continuously generated secondary re-
sources and waste more appealing as compared to treatment and
landfill disposal (Shemi et al., 2015). As a result, various kinds of al-
ternative pyro and hydrometallurgical techniques, including
bioleaching, alkaline leaching, and acid leaching, as well as combina-
tions of these techniques are increasingly utilized (Seidel et al., 2001;
Habashi, 2005; Shemi et al., 2015; Yao et al., 2014). However, pyro-
metallurgical techniques are associated with disadvantages and lim-
itations due to high energy consumption and the poor quality of end
products (Medi et al., 2006).

Among themethods currently in use, acid leaching is commonly uti-
lized for heavymetal recovery due to its wide applicability. Sulfuric acid
leaching has been effectively utilized together with electrowinning to
recover Cu from galvanic sludge (Huyen et al., 2016). The study by
Huyen et al. (2016) emphasized that the use of acid for leaching is
more cost effective and efficient than leaching with bases. Vemic et al.
(2016) focused on the recovery of heavy metals (i.e., Mo, Ni, and Co)
from sludge generated from recyclingplants, using several concentrated
acids, including sulfuric, nitric, and hydrochloric acids, as well as an acid
combination. The greatest recovery of metals resulted from concen-
trated sulfuric acid, reflecting its capability for leaching due to its strong
oxidizing capacity as a diacidic compound. Alternately, Walawalkar
et al. (2016) used sulfuric, nitric, and hydrochloric acids to recover
rare earth elements from phosphogypsum and found that nitric and hy-
drochloric acids exhibited better leaching than sulfuric acid. The
leaching efficiency is not only dependent on the type of acid used but
also on the type of the rawmaterial orwaste used. Althoughmany stud-
ies to date have investigated the capacity of inorganic acids for acid
leaching, experiments with organic acids are limited (Zhou et al.,
2017; Battsengel et al., 2018; Liu et al., 2016). The studies of Hamer
et al. (2003) and Rajapaksha et al. (2012) highlight the usability of or-
ganic acids for the dissolution of metals from minerals by increasing
the rate of dissolution by both ligand-promoted and proton-promoted
mechanisms.

As a developing country, industries in Sri Lanka make only minimal
efforts for treatment of generated waste due to lack of treatment facili-
ties and associated costs. The electrical appliances industries in Sri Lanka
generate large quantities of heavy metal rich sludge. However, the lim-
ited availability of treatment facilities leads to the discharge of this
sludge directly into surrounding habitats, including wetlands, posing
serious threats to the environment and human health (Anjithan et al.,
2015). Treating heavy metal-rich waste by acid leaching could be the
best option for a developing country like Sri Lanka, because it involves
the recovery of heavy metals alongside detoxification. However, indus-
trial sludge types widely vary in terms of physicochemical characteris-
tics, influencing the effectiveness of the treatment methods and
processes. Further, due to the variation in chemical composition of var-
ious industrial sludges, the effectiveness of different types of acids for
acid leaching may also vary. In this regard, an understanding of the
types of metals present in the sludge and their fractionation among
the different phases of sludge is useful in adopting the most suitable
acid type for leaching. Additionally, an understanding of the mecha-
nisms involved in the metal release from sludge can better inform the
best and most cost-effective acid treatments for metal recovery. There-
fore, the main objectives of this study are to 1) characterize the sludge,
2) determine the release rate of Cu, Pb andNi by three organic and three
inorganic acids to find out the most effective leaching solution, and
3) describe the mechanisms involved in the release of metals.

2. Material and methods

Electrical industrial sludgewas collected from the wastewater treat-
ment plant of one of the leading electrical product manufacturing com-
panies in Western Province, Sri Lanka. The sludge was dried at ambient
temperature (25–27 °C), mechanically crushed, and sieved through a 1-
mmmesh.

2.1. Characterization of sludge

Chemical parameters, including pH, electrical conductivity (EC),
available nitrogen and phosphorus, percentage of total organic carbon
(TOC), and cation exchange capacity (CEC) were analyzed using the
standard procedures presented in Anderson and Ingram (1989). The
pH and EC of electrical industrial sludge were determined by analyzing
the sludge in liquid suspension with deionized water at a 1:10 ratio.
Plant-available nitrogen, phosphorus, and %TOC were estimated by col-
orimetricmethods. Tomeasure the CEC of electrical industrial sludge, an
extraction of ammonium acetate was used. From the sludge, 2.0 g was
shaken with 20 mL of ammonium acetate solution for 15 min at
100 rpm, and the solution was filtered through a 0.45-μm syringe filter.
The filtratewas analyzed for Na, K, Ca, andMgusing inductively coupled
plasma optical emission spectroscopy (ICP-OES) (iCAP 7600 ICP-OES),
and the CEC value for electrical industrial sludge was calculated.
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Scanning electron microscopy (Hitachi SU6600 Analytical Vari-
able Pressure FE-SEM) was employed to analyze the surface charac-
teristics of sludge particles. Energy-dispersive X-ray spectroscopy
(SEM/EDS) was carried out to determine the elemental composition
of electrical sludge sample using the same scanning electron
microscope.

The structural mineralogy of the sludge sample was determined
by the powder X-ray diffraction (PXRD) technique (Rigaku, Ultima
IV-Japan). The PXRD patterns were obtained from Cu Kα radiation
at a wavelength of 1.54056 Å at 40 mA and 40 kV, scanning the
range between 2 and 65° (2θ). Fourier transform infrared spectro-
photometry (FTIR), using the Thermo Scientific NICOLET iS10
(USA), was utilized to determine functional moieties present in the
sludge particles. FTIR transmission mode was utilized to collect spec-
tra between wavenumbers 4000–400 cm−1 at a resolution of 4 cm−1

and using 64 repeat scans. The Brunauer-Emmett-Teller (BET)
methodwas employed to estimate the specific surface area of electri-
cal industrial sludge.

2.2. Chemical extractions

2.2.1. Diethylene triaminepentaacetic acid (DTPA) extraction
The DTPA extractionmethodwas utilized to determine theDTPA ex-

tractable concentrations of heavy metals, as this extraction is well-
suited to determine the plant bioavailable fraction of metals in soil
and sediments (Rajapaksha et al., 2012). A total of 20.0 mL of
0.005 mol L−1 DTPA and 0.01 mol L−1 CaCl2 in 0.1 mol L−1

triethanolamine solution of pH 7.30 was used to extract metals from
10.0 g of air-dried electrical industrial sludge. The solution was shaken
for 2 h at 100 rpm and filtered through a 0.45-μmsyringe filter. The bio-
available concentrations of metals in extracted solutionwere quantified
by ICP-OES (iCAP 7600 ICP-OES).

2.2.2. TCLP test
The toxicity characteristic leaching procedure (TCLP) introduced by

the United States Environmental Protection Agency (EPA) was
employed to determine the ability of toxic metals in sludge to be re-
leased into the environment and groundwater. Extraction was done
with TCLP extraction fluid # 2 (pH 2.88 ± 0.05) and a liquid:solid
ratio of 20 in polypropylene tubes, using a rotary shaker for 18 h at 30
± 2 rpm at ambient temperature (25–27 °C). Solutions were filtered
through 0.45-μm syringe filters and analyzed by ICP-OES (iCAP 7600
ICP-OES) for metals.

2.2.3. Sequential extractions of heavy metals
Sequential extraction for sludge was done through five consecutive

extractions (Tessier et al., 1979; Armienta et al., 1996). A sample of
1.0 g of air-dried sludge was taken for the initial extraction step.

Extraction 1 (Exchangeable)

The sludge sample was treated with 20.0 mL of 1 mol L−1 magne-
sium chloride solution (pH 7.0)with continuous agitation for 1 h at am-
bient temperature (25–27 °C).

Extraction 2 (Bound to carbonates)

Residue that resulted from Extraction 1was leached with 20.0 mL of
1mol L−1 sodium acetate (adjusted to pH 5.0 with acetic acid) for 2 h at
ambient temperature (25–27 °C) with continuous agitation.

Extraction 3 (Bound to Fe\\Mn oxide)

Residue from Extraction 2was reacted with 20.0 mL of 0.04 mol L−1

hydroxylamine hydrochloride in 25% (v/v) acetic acid with slow and
continuous agitation at 90 °C for 2 h.
Extraction 4 (Bound to organic matter)

Residue from Extraction 3 was treated with 3.0 mL of
0.02 mol L−1 nitric acid and 5.0 mL of 30% hydrogen peroxide,
which was adjusted to pH 2 with the addition of nitric acid. The so-
lution was heated at 85 °C for 2 h with occasional stirring. Then, a
3.0 mL aliquot of 30% hydrogen peroxide at pH 2 was transferred
to the same solution and heated to 85 °C with intermittent agitation
for 3 h. Afterwards, the solution was maintained at ambient temper-
ature (25–27 °C), and 5.0 mL of 3.2 mol L−1 ammonium acetate in
20% (v/v) nitric acid was mixed. Then, the solution was diluted to
20.0 mL, with continuous agitation.

Extraction 5 (Residual)

From the Extraction 4 residue, 0.2 g was digested by amicrowave di-
gester with 4.0 mL of concentrated nitric acid.

After each successive extraction, the solution was centrifuged for
15 min at 3500 rpm, and the supernatant was filtered through 0.45-
μm syringe filters and analyzed for metals using ICP-OES (iCAP 7600
ICP-OES).

2.3. Heavy metal dissolution with organic and inorganic acids

Acid leaching was done in batch experiments using three inorganic
(i.e., nitric, sulfuric, and phosphoric) and three organic (i.e., acetic,
malic, and citric) acids. Among the six acids, nitric and acetic are mono-
basic, sulfuric and malic are dibasic and phosphoric and citric are triba-
sic. These different acids were selected for leaching experiments in
order to determine their effectiveness for heavy metal dissolution and
to uncover related mechanisms. All metals were analyzed after the ex-
traction step with ICP-OES (iCAP 7600 ICP-OES).

2.3.1. Solid to liquid ratio
To find the most suited solid to liquid (S/L) ratio for heavy metal re-

covery from sludge, 2 mol L−1 sulfuric and malic acid solutions were
used. Three S/L ratios of 20, 60, and100 g L−1were employed. All the so-
lutionswere shakenwith a linear shaker at 100 rpm at ambient temper-
ature (25–27 °C) for 12 h.

2.3.2. Release rate and pH dependency
Five concentrations (i.e., 0.1, 0.5, 1.0, 1.5, and 2.0mol L−1) for each of

the six acids weremade and extractions were donewith each sample of
sludge using an S/L ratio of 20 g L−1, which was determined to be the
optimal S/L ratio from previous experiments. Each leachate was filtered
through 0.45 μm filters after shaking for 12 h at 100 rpm at ambient
temperature (25–27 °C). All the filtrated samples were analyzed with
ICP-OES (iCAP 7600 ICP-OES) to find out the released concentrations
of metals.

Themethodology described in Hamer et al. (2003)was incorporated
to evaluate the rate of release of Pb, Cu, and Ni from sludgewith varying
concentrations of organic and inorganic acids.

RT ¼ KTa
nT
acid ð1Þ

where RT (mol m−2 s−1) is the total rate of metal dissolution with the
action of a particular acid, KT (mol m−2 s−1) is the rate constant of the
particular acid, n is the experimentally determined reaction factor, and
a is the activity of the particular acid, based on its concentration.

Similarly, Eq. (2) was used to evaluate the pH dependency of the re-
lease rate of the total Pb, Cu, and Ni by a particular acid with the same
variables as in Eq. (1).

logRT ¼ logkT−nTpH ð2Þ



Table 1
Chemical properties and elemental compositiona of electrical industrial sludge.

Parameter pH (1:10) EC
(μs cm−1)

Available N
(mg kg−1)

Available P (mg kg−1) TOC (%) CEC
(cmolc kg−1)

BET
(m2 g−1)

7.92 461.33 1.91 709.07 10.24 19.55 8.63
EC = Electrical conductivity, TOC = Total organic carbon, and CEC = Cation exchange capacity.

Element C O P Ca Mg Si Al Fe Cu Zn

wt% 37.0 37.4 5.1 10.0 0.2 1.8 1.6 4.6 0.6 1.6

a Elemental composition was obtained from SEM/EDS.
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3. Results and discussion

3.1. Characterization of the sludge

Table 1 summarizes the basic chemical characteristics of electrical
industrial sludge. The sludge was slightly alkaline in nature, and this
probably resulted from the pretreatment of sludge before release from
the industrialwastewater treatment plant or due to presence of carbon-
ate compounds.

The electrical industrial sludge consists of heterogeneous particles,
as revealed by SEM images (Fig. 1a(i)). The uneven surfaces of large
sludge aggregates were comprised of nano-range (b100 nm) unorga-
nized, minute particles (Fig. 1a(ii)).

The SEM/EDS results also provide elemental composition data of the
sludge (Fig. 1b). The electrical industrial sludge was primarily com-
posed of carbon, oxygen, and calcium (37.0, 37.4, and 10.0 wt%,
Fig. 1. SEM images (a) and SEM/EDS pattern (b) of electrical ind
respectively), while P, Mg, Si, Al, Fe, Cu, and Zn were also present
(Table 1). The presence of a relatively high weight percentage of C in
the SEM/EDS results reveals the occurrence of organic compounds,
which is also supported by the high percentage of total organic carbon
observed in the sludge (Table 1). In addition, the occurrence of a high
weight percentage of C and Ca indicates the existence of CaCO3, which
may have contributed to the slight alkalinity of sludge.

The Fig. 2(a) reveals the PXRD pattern that was obtained for electri-
cal industrial sludge. The peaks at 21.94°, 39.32° and 47.45° 2θ indicate
Zn in the form of Zn(OH)2; peak at 29.423° 2θ for PbO; peaks at 32.29°
and 36.55° 2θ for PbO2 and the peaks obtained at 26.64° and 43.148°
2θ are attributed to Fe in the form of Fe2O3. Furthermore, the presence
of rare paramelaconite (Cu4O3) is indicated by the peak at 43.14° 2θ.
Moreover, the intense PXRD pattern at 29.423° 2θ and peaks at 36.55°
and 39.39° 2θ show the presence of CaCO3 and peaks at 20.64° and
33.07° 2θ indicate SiO2.
ustrial sludge; magnification of (i) ×500 and (ii) ×25,000.



Fig. 2. (a) PXRD patterns and (b) FTIR spectrum for electrical industrial sludge.
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The deep band at approximately 1030 cm−1 in the infrared spec-
trum of electrical industrial sludge (Fig. 2b) indicates the symmetric
and antisymmetric stretching of Si\\Obonds, among tetrahedral groups
(Barrera et al., 2017). The small band at 542 cm−1 represents the pres-
ence of the Si-O-Al bond (Tireli et al., 2015). Similarly, the small band
pattern at 1642 cm−1 indicates the stretching and bending vibrations
of OH (Wang et al., 2018). Moreover, the band at 2922 cm−1 is gener-
ated by –CH2, and that at 1727 cm−1 represent COO stretching (Lu
et al., 2009), revealing that the sludge contains organic matter. Addi-
tionally, the broad band in the 3000–3700 cm−1 range represents the
presence of moisture (Ali et al., 2015).

3.2. Chemical extractions

The results for single extraction procedures and sequential ex-
tractions of electrical industrial sludge are given in Table 2. The
highest DTPA extractable metal was Cu (298.7 mg kg−1), whereas
the lowest extractable concentration was reported for Ni
(1.8 mg kg−1). The DTPA extractable Pb concentration was
2.3 mg kg−1, which was much less compared to the concentration
of extractable Cu (0.78%). The DTPA extractable concentration ex-
presses the amount of metal that is bioavailable for plant uptake (Li
et al., 2014). Meanwhile, the toxicity characteristic leaching
Table 2
Heavy metals distribution among different fractions of electrical industrial sludge.

Extractions Fractions Amount releaseda

Pb Cu Ni

Single extractions
0.005 DTPA Extractable 2.3 298.7 1.8
TCLP extraction Toxicity 0.0 1.2 0.1

Sequential extractions
1 mol L−1 MgCl2 (pH 7.0) Exchangeable ND 24.5 ND
1 mol L−1 NaOAc (pH 5.0) Carbonates 10.2 7401.0 18.3
0.04 mol L−1 NH2OH·HCl in 25% (V/V)
HOAc (90 °C)

Fe-Mn oxides 40.5 2939.1 20.2

0.02 mol L−1 HNO3, 30% H2O2 (85 °C),
3.2 mol L−1 NH4OAc

Organic matter 406.5 738.7 ND

HF, HClO4, HCl Residual/silicate 800.6 281.2 5.2
Total concentration from (i) to (v) 1257.8 11,384.4 43.8

a Released amountofmetals fromall the extractions are represented inmgkg−1, except
concentration for TCLP extraction which is in mg L−1.
procedure (EPA: TCLP) helps determine the mobility of hazardous
waste, both in organic and inorganic forms. Lead was not detected
in the TCLP solution (Table 2). Although the TCLP extraction yielded
concentrations of 1.2 and 0.1 mg L−1 for Cu and Ni, respectively, nei-
ther was considered a RCRA-8, hazardous metal by the US EPA
(1992). However, the leaching of Cu and Ni, and their bioaccumula-
tion in biota may pose a risk to human and ecosystem health
(Brewer, 2010; Cui et al., 2010; Brocato and Costa, 2017).

In the sequential extraction, the total concentration of Cu from ex-
traction (i) to (v) was 11,384.4 mg kg−1, while the total concentrations
of Pb and Ni were 1257.8 mg kg−1 and 43.8 mg kg−1, respectively.
Therefore, the content of Cu in electrical industrial sludge is nine times
higher than that of Pb and 260 times higher than that of Ni. The maxi-
mum concentration of Cu (7401.0 mg kg−1), which is 65% of the total
concentration, was found in the carbonate-bound fraction. Generally,
the release rate of a particular metal under acidic conditions is directly
influenced by the fraction that is associated with it (Wang et al.,
2015). The carbonate-bound fraction is greatly influenced by variation
in the pH, and the metal bound to it can be easily extracted by solid-
state dissolution (Yang et al., 2019). The study of Han and Banin
(1995) found that all the carbonates in calcareous soil with 10–20% of
carbonates can be dissolved with a NaOAc-HOAc solution at pH 5.5.
Therefore, the total release of metals bound to carbonate fraction can
be expected, even with weak acids while the utilization of a strong
acid will only increase the rate of dissolution. Thus, the high Cu content
found in the carbonate fraction reflects the suitability of acid leaching
for Cu extraction compared to the use of other leaching techniques. In
contrast, the concentration of Pb was comparatively less
(10.2 mg kg−1) in the carbonate-bound fraction, while the greatest Pb
concentration (800.6 mg kg−1) was reported in the residual/silicate
fraction. In the residual fraction, metals are captured in crystalline as-
semblages and release into the environment under natural conditions
is uncommon. Generally, ordered silicates including, sheet, chain and
network silicates, are less susceptible to dissolution with acids due the
high strength of the Si\\O bond (Terry, 1983). The least amount of Cu
was bound to the exchangeable fraction (24.5 mg kg−1), while Pb was
not detected in that phase. Nickel was primarily observed as bound to
the Fe\\Mn oxide and carbonate-bound fractions (20.2 and
18.3mg kg−1, respectively). Copper, Pb, andNi occupied individual frac-
tions in the order of: carbonates N Fe\\Mn oxides N organic matter N re-
sidual N exchangeable for Cu, residual N organicmatter N Fe\\Mnoxides
N carbonates for Pb, and Fe\\Mn oxides N carbonates N residual/silicate
for Ni.



Fig. 4. Release rates for, a) Pb, b) Cu, and c) Ni by different acids under increasing concentrations.
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6 V. Gunarathne et al. / Science of the Total Environment 696 (2019) 133922



7V. Gunarathne et al. / Science of the Total Environment 696 (2019) 133922
3.3. Inorganic and organic acid extractions

3.3.1. Best solid to liquid ratio
As shown in Fig. 3, the maximum release of Cu was achieved with a

S/L ratio of 60 g L−1 for both sulfuric and malic acids (9592.19 and
9413.97 mg kg−1, respectively). As opposed to the release of Cu, the re-
lease of Pb reached a maximum at the S/L ratio of 20 g L−1. At that S/L
ratio, sulfuric acid was responsible for the release of 151.82 mg kg−1

of Pb while malic acid facilitated the release of 1122.61 mg kg−1 of Pb.
Similarly, the release of Ni was highest at a S/L ratio of 20 g L−1 for
both acids (28.13 and 19.28 mg kg−1 for sulfuric and malic acid,
respectively).

However, the maximum release of Cu by both sulfuric and malic
acids was achieved at a S/L ratio of 60 g L−1, while the maximum re-
lease of Pb and Ni was observed at 20 g L−1. Moreover, the handling
of electrical industrial sludge at high S/L ratios was difficult due to
the gluey consistency of the sludge which clogged the filter papers.
Therefore, 20 g L−1 was considered as the optimal S/L ratio for the
majority of heavy metals and it was used to carry out further
experiments.

3.3.2. Release rate
The Fig. 4 shows the effect of the concentration of each acid on

the release rates of Pb, Cu, and Ni. Nitric acid was responsible for
the maximum release of Pb and Ni. The release of Pb exceeded a
rate of 2.0 × 10−11 mol m−2 s−1 at nitric acid concentrations
above 0.5 mol L−1. Similarly, the highest release rate of Ni was
governed by nitric acid. All five concentrations of nitric acid, rang-
ing from 0.1 to 2.0 mol L−1, yielded release of Ni above the rate of
2.0 × 10−12 mol m−2 s−1. The release rates of Cu from electrical
industrial sludge by nitric, phosphoric, and citric acids were
shown to be comparatively similar at concentrations above
0.5 mol L−1.

Nitric, phosphoric, and citric acids led to considerably highermetal re-
lease rates than the other three acids at the concentration of 1.0 mol L−1

(Fig. 5). However, nitric acid at 1.0 mol L−1 concentration yielded the
highest release rates for all three metals examined. The cumulative
metal release rate from nitric acid was 4.25 × 10−10 mol m−2 s−1,
and the rates for individual metals, Pb, Cu, and Ni were 2.28 × 10−11,
Fig. 5. Cumulative release rates for Pb, Cu, and Ni from electrical industrial sludge in t
3.99 × 10−10, and 2.63 × 10−12 mol m−2 s−1, respectively. The sum of
the release rates of metals from electrical industrial sludge by
1.0mol L−1 acid increased in the order of:malic b sulfuric b acetic b phos-
phoric b citric b nitric.

3.3.3. Assessment of the proton- and ligand-promoted release of metals
It is useful to employ an enhancement factor to compare the rate of

dissolution of elements by different acids. Previous studies have shown
thatmetal release from soils andminerals in the presence of organic and
inorganic acids is governed by both proton- and ligand-promoted
mechanisms (Rajapaksha et al., 2012; Hamer et al., 2003). Both protons
and ligands are capable of releasingmetals by desorbing them from dif-
ferent fractions of the sludge. Ion exchange is the main proton-
promoted mechanism for metal release. Moreover, high concentrations
of protons from strong acids can dissolve the matrix associated with
metals, resulting in metal release. On the other hand, ligands from inor-
ganic acids comprise of various functional groupswhich have the capac-
ity to make complexes with metals and facilitate metal release (Neale
et al., 1997). Therefore, the total rate of metal release (RT) is equal to
the sum of the rates for proton-promoted release (RH) and ligand-
promoted release (RL) (Welch and Ullman, 1996).

RT ¼ RH þ RL ð3Þ

Eq. (2) was used to calculate log RT for the release of each metal by
both organic and inorganic acids at pH 1. To do so, the pH of each or-
ganic and inorganic acid used under each concentration was calculated
by solution H+ concentration. The values obtained for RT at these con-
centrations of acids were converted to a log scale and plotted against
the calculated pH value of each acid at that particular concentration
(Fig. 6). Linear fitting was done for resulting curves and rate constant
(log KT) and reaction order (nT) in Eq. (2) were calculated using the in-
tercept (log KT) and slope (nT) of the fitted curves. No ligand was inte-
grated into nitric acid, thus, it was assumed that RT from nitric acid
was only generated from proton-promoted mechanisms (RH); RL was
calculated using Eq. (3). All the values obtained for log KT, nT, RT, and
RL are presented in Table 3.

At pH 1, the highest rate for Pb release is driven by malic acid
(3.90 × 10−11 mol m−2 s−1). Similarly, malic acid poses the highest
he presence of inorganic and organic acid solutions at 1.0 mol L−1 concentration.



Fig. 6. Log rates of metal released from electrical industrial sludge by different acids (i.e., a) nitric, b) sulfuric, c) phosphoric, d) acetic, e) malic and f) citric) under different pH values.
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RL and RT/RH for Pb release. The presence of a high RT/RH ratio reveals
that the release of Pb by malic acid is driven by ligand-promoted
mechanisms rather than proton-promoted mechanisms. Malic acid
is known to increase dissolving efficiencies of divalent metal ions
by chelating them and forming surface complexes (Seo and Kim,
2016; Mckenzie et al., 1987). Malic acid has the ability to make



Table 3
Rate constant (KT), reaction order (nT), total rate of dissolution (RT), ligand-promoted dis-
solution (RL), and RT/RH ratio for Pb, Cu, and Ni released from electrical industrial sludge in
the presence of different inorganic and organic acids.

Acid log KT nT RT RL RT/RH

mol m−2 s−1 ×
10−11

Release of Pb
Nitric acid −10.66 −0.01 2.18 0.00 1.00
Sulfuric acid −11.69 0.06 0.23 −1.95 0.11
Phosphoric acid −10.84 0.10 1.81 −0.37 0.83
Acetic acid −10.27 −0.92 0.64 −1.55 0.29
Malic acid −9.65 −0.76 3.90 1.71 1.79
Citric acid −10.67 −0.08 1.78 −0.40 0.82

Release of Cu
Nitric acid −9.42 −0.11 29.48 0.00 1.00
Sulfuric acid −9.68 0.07 24.74 −4.74 0.84
Phosphoric acid −9.34 −0.08 38.07 8.59 1.29
Acetic acid −8.86 −0.28 72.62 43.14 2.46
Malic acid −9.93 0.13 15.96 −13.52 0.54
Citric acid −9.32 −0.06 41.36 11.88 1.40

Release of Ni
Nitric acid −11.64 0.00 0.23 0.00 1.00
Sulfuric acid −11.96 −0.03 0.10 −0.13 0.44
Phosphoric acid −12.61 0.49 0.08 −0.16 0.32
Acetic acid −12.64 0.21 0.04 −0.20 0.16
Malic acid −12.34 0.17 0.07 −0.17 0.29
Citric acid −12.57 0.36 0.06 −0.17 0.27
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divalent metal-Mal complexes by acting as a chelator (Seo and Kim,
2016). In this study, the Pb-Mal complex was formed in the presence
of Pb2+. The two complexes are produced from the chelating reac-
tion of Pb with malic acid, as Pb-HMal and Pb(H2Mal)2. Moreover,
each of the malic acid molecules can release two H+ ions by a two-
step process, as mentioned in Eqs. (4) and (5) (Li et al., 2010), en-
hancing the further release of Pb by proton-related mechanisms.

H3‐Mal⇌H2‐Mal− þHþ;pKa1 ¼ 3:5 ð4Þ

H2‐Mal−⇌H‐Mal2− þHþ;pKa2 ¼ 5:1 ð5Þ

However, at pH 1, the lowest rate of Pb release was observed at
0.23 × 10−11 mol m−2 s−1, of the reaction with sulfuric acid. Lead
is mainly associated with residual/silicate bound fraction (Table 2)
and sulfuric acid has a limited reaction with Pb containing silicates
due to the solubility limits of sulfates of Pb (Terry, 1983).

Conversely, acetic acid produced the greatest rate of release of Cu
(72.62 × 10−11 mol m−2 s−1) at pH 1. The calculated enhancement
factor indicates that Cu release is facilitated by both ligand- and
proton-promoted mechanisms (RL = 43.14 × 10−11 mol m−2 s−1

and RT/RH = 2.46). Ionization of acetic acid releases H+ (Eq. (6)), fa-
cilitating the release of Cu from sludge through proton-promoted
mechanisms.

CH3COOH⇌HþCH3COO
−;pKa ¼ 4:75 ð6Þ

Moreover, acetic acid contains ligands that enhance the release rate
of Cu, in a similar manner as in malic acid (Eq. (7)).

Cu2þ þ 2CH3COOH⇌ CH3COOð Þ2Cuþ 2Hþ ð7Þ

The concentration and activity of ligands are proportional to the re-
lease rate ofmetals (Rajapaksha et al., 2012). However, in this study, the
release rates of Pb and Cu were promoted in different ways by the li-
gands from acetic, malic, and citric acids. Therefore, the nature of the li-
gand played a major role in the release of Pb and Cu from sludge.
Moreover, chelating agents such as EDTA (Ethylenediamine tetraacetic
acid), DTPA (diethylenetriamine pentaacetic acid) and NTA
(nitriloacetic acid) have been shown to have better performance in
the removal of heavy metals from waste materials by making strong
metal-ligand complexes (Zhang et al., 2015a). Among them, EDTA is
the most widely used chelating agent and studies of Zhang et al.
(2015b) and Zhang et al. (2016) have shown the high affinity of EDTA
for Cu2+ in the removal of Cu from anammox granules. However, NTA
has been reported as class II carcinogen while DTPA has been identified
as a toxicant with potential carcinogenic activity (Zou et al., 2009). Al-
though, EDTA has no known carcinogenic effects, it can induce cytotox-
icity andweak genotoxicity.Moreover, EDTA has been reported to cause
reproductive and developmental anomalies in animals after oral expo-
sure (Lanigan andYamarik, 2002). However, organic acids such as acetic
and citric acids are considered as non-toxic and renewable compounds
which can be easily biodegraded (Halpern et al., 2014; Chamarro et al.,
2001). Therefore, the use of organic acids to chelatemetals in sludge can
be considered a feasible and effective techniquewhen considering envi-
ronment and human health risks. Moreover, unlike other chelating
agents, further enhancement of metal removal can be expected by
proton-related mechanisms resulting from the use of organic acids.

Unlike Pb and Cu, nitric acid facilitated the highest rate of release for
Ni, at the rate of 0.23 × 10−11 mol m−2 s−1. In contrast to the release of
the other two metals studied, the release of Ni was not attributed to
ligand-promotedmechanisms. As an inorganic acid, the nitric acid mol-
ecule does not contain chelating groups that assist ligand-promoted
mechanisms in the release of Ni. In an aqueous solution, the complete
ionization of nitric acid takes place, releasing H+ ions as shown in
Eq. (8). This results in ion exchange, a proton-promotedmechanism, re-
leasing Ni from electrical industrial sludge.

HNO3 aqð Þ→Hþ
aqð Þ þNO−

3 aqð Þ ð8Þ

4. Conclusions

This study demonstrates that electrical industrial sludge is mainly
composed of Cu and Pb as heavy metals, and Ni is also present in
small concentrations. Copper is predominantly found in the
carbonate-bound fractions, emphasizing the feasibility of the acid
leaching technique for recovering Cu from electrical industrial sludge.
Lead, on the other hand, is mainly confined to the residual fraction,
while Ni is primarily bound to the Fe\\Mn oxide-bound fraction. The
optimal S/L ratio for maximum release of Cu is 60 g L−1 for both sulfuric
and malic acids. In contrast, 20 g L−1 resulted in the greatest release of
Pb and Ni by sulfuric and malic acids. Maximum cumulative rates of re-
lease for Pb, Cu, andNi at 1.0mol L−1 acid concentrationwere facilitated
by nitric acid and it is the optimum leaching solution for separation of all
three examined metals from the sludge. At pH 1, the highest rate of re-
lease for Pb was with malic acid, while acetic acid was responsible for
the highest release observed for Cu. The high rate ofmetal release by or-
ganic acids is attributed to the ligand-promotedmechanisms, which en-
hance the release of metal ions from the sludge forming complexes. In
contrast to Pb and Cu, the rate of release for Ni was highest with nitric
acid at pH 1, indicating proton-promoted mechanisms, mainly ion ex-
change. Therefore, knowledge of the release mechanism of heavy
metals from waste materials is useful for determining the best acid
type and concentration for efficient and effective recovery of metals.
Further studies targeting different types of industrial sludge with dis-
similar characteristics are necessary to reveal the exact mechanisms of
metal release by acids.
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