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A B S T R A C T

Hardness of paddy is an indicator of preserved quality of rice as it maintains the integrity of grain to avoid
falling-off during milling. Most of the prevailing methods carter to determine the hardness are destructive and
time consuming. Though, use of Near Infrared (NIR) is nondestructive, its conventional approach implies se-
parate Partial Least Square (PLS) model for each new paddy type to be predicted successfully. Therefore, this
study evaluates NIR spectroscopy (588–1091 nm) to be used as a common PLS model for quantifying a range of
paddy varieties and processing conditions in rapid and non-destructive mode. The acquired NIR spectra were
used to construct PLS calibration models by using Pirouette 4.5 software. As a result, the lowest standard error of
validation (SEV=1.711) and highest correlation coefficient of validation (R2= 0.936) were obtained. The
research has successfully demonstrated that the potential possibility of NIR spectroscopy to be used as a common
PLS model for quantifying hardness of paddy from new varieties and conditions.

1. Introduction

Quality of rice depends upon large number of factors in a paddy
production and processing line-up from farm to table. Particularly,
these factors are ranked based on their importance to the end users
(Cuevas et al., 2016). The most important parameter related to global
human nutrition is the milling quality which can be expressed as the
quantities of whole and broken kernels that remain after hulling and
milling paddy rice (Lyman et al., 2013). Furthermore, the market de-
mand of processed paddy with broken grain is much lesser than that of
whole grains due to poor quality attributes of rice after cooking (Lai
et al., 1983). Therefore, grains should be resistance to breakage for
reducing broken rice yield (Jongkaewwattana and Geng, 2001). It can
be measured as hardness of grains which is the foremost determinant of
the grain quality associated with milling recovery (Juliano, 1979).
Hardness can define as the maximum force applied on a grain at any
time during the first cycle of compression (Harris, 2012). It was de-
termined on rough, brown and milled rice forms using different
methods and it is important to many facets of the rice industry
(Pomeranz and Webb, 1985). Besides processing and milling grain
breakage, it is also an essential parameter when dealing with storage
changes and aging, drying and handling, kernel appearance and
translucency and resistance to insects (Webb et al., 1986). In addition,
hardness is a key parameter to let the consumer to decide the quality of

parboiled rice in the market because, texture of the rice change sig-
nificantly due to gelatinization and retro-gradation of starch during
parboiling (Poritosh et al., 2006).
A standardized method has not been recognized to measure grain

hardness because each method showed particular drawbacks related to
the equipment and measurement principles are being used. Hardness
can be tested as single kernel or bulk sample. The force required to
indent single kernel can be measured using different hardness testers
including Leitz Minilsad Hardness Tester, Barcol Impressor and Miag
Microhardness Tester (Bakhella et al., 1992). Similarly, the force
needed to crush the grain can be measured using Instron® universal
testing machine and continuous automated single-kernel hardness
tester (Lai et al., 1985). Limitation of using these penetrometers type
single gain testing methods except time consuming is that hardness
value can be highly varied due to the level of moisture content and
uniformity among the grains. The laser light-scattering method is an-
other method for testing single kernel hardness. It measures the mean
volume diameter of grains. However, reports revealed that overlapping
between different grain classes when measuring the hardness of wheat
grains using laser light-scattering methods (Bakhella et al., 1992).
Parameters used to measure hardness by using bulk samples testing

technique are the grinding resistance, grinding time, volume of milled
material and the ratio of coarse to fine particles either by volume or by
weight (Cauvain and Young, 2009). Work required to grind the rice
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grains can be measured in grinding resistance technique using Ste-
vensen hardness tester. Miller et al. (1984) determined the hardness of
rice indirectly by measuring the time spend to grind 4 g of rice with the
Brabender automatic micro hardness tester. Although these two
methods were not affected by kernel size, grinding time method was
affected by temperature (Miller et al., l98l) while grinding resistance
method was influenced by moisture content (Stenvert, 1974). Based on
sieving and weighing of ground grains, hardness can be expressed as
pearling index or particle size index. It was found that pearling index
values were influenced by both genetic and environmental factors and
it couldn't rank different grain classes due to bran properties. Even
though particle size index technique was relatively quick, reliable and
less expensive, major disadvantage of both these techniques is the lack
of complete standardization process to evaluate grain hardness
(Bakhella et al., 1992).
It is clear that most of the prevailing methods for detecting paddy

hardness are destructive, time consuming and not standardized. To
overcome these drawbacks, Near Infrared (NIR) spectroscopic tech-
nique can be used as a powerful tool to assess grain hardness (Bakhella
et al., 1992). Previous research found that NIR spectroscopy of wheat
and rice grain has a number of well-known advantages namely speed of
analysis, no sample preparation required, environmental friendly and
non-destructive nature, low cost per test and concurrent analysis of
multiple constituents (Srivastava et al., 2018; Mishra et al., 2018).
Despite its advantages, this technique still struggles with initial cost of
the instrument. However, NIR technique can be successfully employed
in quantifying various physiochemical properties of rice such as,
whiteness, milling degree, cooking quality, protein, amylase, moisture
content, total phenolic contents and antioxidant capacity in rapid and
non-destructive mode (Zhang et al., 2008). Recently, Srivastava et al.
(2018) have successfully predicted the quality of the stored rice in
terms of protein, ash, fat, fiber, carbohydrate, hardness, moisture con-
tent, amylose content, 1000 kernel weight, cooking time, solubility
weight loss, bulk, and true density by using Fourier Transform infrared
(FTNIR) spectroscopy as well. Therefore, high cost of the instrument is
not an obstruction as it can evaluate large number of quality parameters
of rice rather than hardness.
Since absorption of NIR energy increase in overlapping overtones

and combinations of rotation and vibration of different chemical bonds
including C–H, O–H and N–H, chemical composition of the organic
molecules can be determined using NIR (Williams, 2003). Similarly,
hardness of rice could be influenced by composition of several mole-
cules like amylose, amylopectin, compact arrangement of starch gran-
ules, protein and lipid (Zhou et al., 2002). Hence, there should be a
possibility to detect hardness of rice using NIR technique. According to
this principle, hardness was determined in rough, brown and milled rice
forms by using NIR spectroscopy at 1680 nm (Webb et al., 1986). It was
found that NIR reflectance and hardness value measured using particle
size index was significantly correlated in all rice forms. Similarly,
simple models by PLS from the NIRS spectra for predicting hardness of
brown rice was developed under a wavelength range of 1400–2400 nm.
Its correlation coefficient was ranging from 0.39 to 0.79 (Siriphollakul
et al., 2013). It is noticeable that accuracy of the previously reported
results regarding to the hardness of paddy is not high enough. There-
fore, it should be developed a strong model based on NIR spectroscopy
for accurate evaluation of paddy hardness. Furthermore, a recent study
has obtained the best model for hardness of infested and fresh stored
rice grains with lowest root mean square error of cross validation
(RMSECV) values 0.02 and maximum correlation coefficient (R2) 99.82
using FTNIR spectroscopic method within a wave number range of
12,000–4000 cm−1 (Srivastava et al., 2018). However, neither of those
reports having the information for using their PLS model performance
for quantifying wide range of other new types of paddy seed samples
and nor attempts for evaluating their model performance for samples
prepared by different processing techniques.
Although VIS-SW-NIR spectroscopy joined with multivariate

analysis are used to measure hardness of grains, no reports on their
adaptation to a wide range of new sample types. On the other hand,
well developed model should be able to predict hardness of wide range
of rice grain such as diverse rice varieties, parboiled rice, and rice
stored under different conditions. Otherwise, there must be a time
consuming conventional NIR model building procedure to take place
for each and every single variety type. That does not bring the NIR for
its full advantage for material analysis. Therefore, the main objective of
this study was to develop a universal VIS-SW-NIR spectroscopic model
to be able to quantify the hardness of wide range of new paddy sample
types that those varieties have not been used in the model building
process. The samples were used in this study were obtained from two
varieties and further maintained them under various perturbed condi-
tions to accumulate wide range of hardness attributes to be in the PLS
model from which we expect to compatible with the hardness attributes
of wide range of prospective new samples from new varieties to be
predicted.

2. Methodology

2.1. Sample preparation

In the conventional approach, a successful model building of NIR
required a wide range of spectral database available in the model. This
is therefore a labor intensive and time consuming task. However, the
required amount of diversity to be in the data set for a successful model
is depending upon the sample type. The spectroscopic attributes of the
sample i.e. molecular structure and physical properties of particle that
make the changes of light matter interaction will be the leading.
Therefore, in this research, the model building was done using raw rice
variety AT 362 for calibration and then the model validation was done
using Kuruluthuda, At-353 and At-401 varieties. Then, the model was
further upgraded by adding wide range of data types to get it up to
global scale model i.e. adding the spectra of different paddy varieties,
then parboiled paddy of different varieties, the raw and parboiled
paddy kept in a different temperature levels, etc. Therefore, different
types of paddy samples have been prepared for the experiment at dif-
ferent stages of the model development as follows.

2.1.1. Preparing of raw paddy samples
AT-362 and Kuruluthuda rice varieties were selected for the ex-

periment at different stages of the model development. Fresh paddy was
harvested in Maha season (2016/2017), then cleaned and kept in dried
in an open yard for sun drying until the moisture content reaches to
14%.

2.1.2. Preparing of the parboiled paddy samples
Portion of At-362 and Kuruluthuda paddy were parboiled by

adapting following processing steps to obtain wide range of hardness
values. Firstly, two portions of each variety were soaked in cold water
for 48 h s while replacing existing water with fresh in every 12 h to
avoid the development of microbes that may lead foul smell for the
parboiled rice. The soaked water was drained off and steamed for about
4–6min until few grains were split open over the surface of the paddy.
The parboiled paddy was dried in an open sun drying yard as a thin
layer (Thickness approximately 1 cm) until moisture content reaches to
18%. Thereafter, this paddy was heaped up and kept for a while (2–3 h)
for uniform moisture diffusion with a view to prevent the case-hard-
ening of the grains. Finally, paddy was spread over the sun drying yard
again to get the final moisture content around 14%.

2.1.3. Preparation of paddy samples under different storage conditions
Since the hardness values represent a wide data range to develop a

strong model, multiple variables were selected as given in Table 1.
About 5 kg of Parboiled and raw paddy of each variety (At-362 and
Kuruluthuda) were packed (48 bags) in Polysack® bags
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(0.45m×0.3m) and stored at 26, 30, 34 and 38 °C in temperature-
controlled chambers for 6 months. Samples were collected monthly as
each treatment represent 3 replicates. Total number of collected sam-
ples were 288.

2.1.4. Preparation of paddy samples under different moisture content
At-353 and At-401 paddy varieties were soaked in water for 12 h

and collected the samples at 2 day intervals to get range of hardens data
for prediction sets. Total number of samples collected for the prediction
set was 60.

2.2. Data collection

All individual paddy samples were first used to obtain the NIR
spectra to be used in the model building process and prediction process
and then the same samples were used to measure their hardiness values
by the reference hardness test.

2.2.1. Acquiring of NIR data
Reflectance spectra from the wavelength range of 588 nm up to

1091 nm was acquired using handheld type NIR Spectrometer FQA-NIR
Gun (588–1091 Shizuoka Shibuya Seiki, Hamamatsu, Japan). A black
rubber probe extension was fixed into the sensor head of the NIR in-
strument to focus the radiation to the samples. This avoids the samples
been exposed to possible outside light conditions that may not be
constant all the time. The detail dimensions of the probe extension
including its improved performance has been previously published
(Jinendra et al., 2010). A custom made plastic cup with 4.5 cm in
diameter and 1 cm in depth was constructed to hold the paddy samples.
The plastic sample cup was filled with paddy sample and the excess
sample surface was trimmed with a spatula (Plate 1[a]). A quartz glass
screen attached to a plastic plate was kept on the top of the paddy
samples to place the spectrometer probe securely and similarly at each
spectra acquisition attempt (Plate 1[b]). Acquisition of all the NIR
spectral data from all the paddy samples throughout the study were
executed under the set optimum sensor exposer integration time of
150ms (Plate 1[c]). Four spectra were acquired from four directions in
each sample to get more variation as marked in plate 1[b]. In the model
building process, the same average hardness value taken from reference
hardness test was similarly assigned to all 4 spectra belonging to that
particular sample in the data table.

2.2.2. Measuring reference data
Digital force gauge (Model-500B, SUNDOO, China) with external

load cell sensor (SH–2N–500N) equipped in an electric vertical stand
(Model-SJX-2KV, SUNDOO, China) was used to measure the hardness
from paddy grains. A 10mm diameter stainless steel V model convex
probe at a cross head speed 150mm/min was used to break a single
grain. Serial output (RS- 232C) of the instrument was connected to the
computer to display the test force curve and test process. Hardness was
recorded as the peak force (N) applied on a grain at any time during the
first cycle of the force curve.
The test was repeated for 20 individual paddy grains from the same

sample lot. Thereafter, extreme and unmatched odd values were re-
moved and calculated the mean of the selected hardness value of a
sample.

2.3. Data analysis

2.3.1. Preprocessing of the spectra
Spectral data at initial end wavelength regions (588–613 nm and

1070–1091 nm) were excluded due to low signal-to-noise ratios in the
instrument. Then, spectral bands between 615 nm and 1068 nm were
used for analyses. The acquired spectra were first evaluated by
Principal Component Analysis (PCA) to remove possible outliers. A
substantial baseline variation between the spectra was presented even
after removing the outliers. This baseline effect is usually presented due
to sample presentation variations and environmental noise which is
undesirable for data analysis. Thus, different combinations of algorithm
options and math transformations were applied to the outlier removed
spectra to reduce the baseline effect. All chemo-metric procedures were
performed on commercially available software Pirouette (Pirouette ver.
4.5, Infometrix, Woodin-ville, WA).

2.3.2. PLS calibration
The spectra removing after the outliers as shown in Table 2 were

applied in the Partial Least Square (PLS) calibration models in Pirouette
4.5 software and models were developed to predict the hardness of the
paddy. All the model configurations including number of factors, data
preprocessing, spectra mathematical transformations, derivative points
etc. were applied in their various possible combinations to be in the PLS
algorithm. The model performance of each model parameter combi-
nation was observed by means of standard error of calibration (SEC)
and coefficient of correlation (R2) the results using the trial and error
method.

2.3.3. Model validation
To validate the constructed PLS model, validation data sets were

prepared using collected NIR and reference data according to the re-
quirement of each model. After developing model to predict paddy
hardness for same variety, new validation set was prepared with 60
paddy samples from two other paddy varieties (At-353 and At-401).
Two hundred and forty NIR spectra were recorded from 60 paddy
samples as 4 spectra per sample (one spectrum per one direction). Then,
model set and validation set were used to evaluate the model.
Validation model performance was assessed in terms of coefficient of
determination (R2) and standard error of validation (SEV).

3. Result and discussion

3.1. Results of primary NIR model for same variety hardness prediction

Step 1; Model set variety AT- 362, prediction set variety AT- 362,

The NIR spectra obtained from 30 samples of raw paddy variety AT-
362, as four spectra per sample (n= 120) were used to prepare the
primary model set. Results, obtained from predicting the spectra taken
from an independent set of the same variety spectra (n= 40) under
different combinations of model configurations in the model algorithm
options i.e. preprocessing and math transformations in PLS model are
shown in Table 3.
The lowest standard error of validation (SEV=0.918) and highest

coefficient of calibration (R2=0.921) value were given under the
mean-centered preprocessing with align math transformation options.
The result of first few attempt of the data analysis, revealed that the PLS
models constructed for hardness prediction of the independent valida-
tion set of AT-362 spectra were fairly good as it records substantially
high coefficient of correlation and low standard error of validation.
(Fig. 1[a]).
However, previous reports revealed that possible association be-

tween hardness and different grain parameters which can be vary ac-
cording to the variety including amylose, alkali spreading value, gela-
tinization temperature, protein and grain size and shape (Webb et al.,

Table 1
Variables and their levels of the experiment.

Variables Levels (with 3 replicates)

Temperature levels 26, 30, 34 & 38 °C
Rice varieties AT-362, Kuruluthuda
Processing technologies Raw, Parboiled
Storage time 30,60,120,150 and 180 day
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1986; Safdar et al., 2009). Furthermore, Mir and Bosco (2013) revealed
that the varietal difference in the hardness of rice grains is due to the
differences in the compact arrangement of starch granules among dif-
ferent rice cultivars. Therefore, hardness can differ in different types of
paddy variety. Then, next step was to validate the model with another
variety to investigate whether validation results were performed well or
not with derived model set.

3.2. Evaluation of primary model for new variety hardness prediction

Step 2; Model set variety AT- 362, prediction set variety
Kuruluthuda

The NIR spectra (n= 120) obtained from 30 samples of raw paddy
variety Kuruluthuda, were used in the prediction set to validate the
model to assess its capabilities for a new variety to be predicted. The
prediction set of spectra was evaluated by principal component analysis
and remove the outliers before prediction. The PLS regression functions
of measured versus predicted hardness of paddy under the best model
configuration of mean-center preprocessing with align math transfor-
mation option are shown in Fig. 1(b).
The results of the model validated by new variety Kuruluthuda were

found to be substantially inferior (SEV=1.846, R2= 0.870) to the
results of the previous primary model which is in predicting the same
variety (SEV=0.918 and R2=0.921). As usually expected, this low
results are due to the incompatibility of the diversity in data matrix in
the two data sets corresponding to their physiochemical properties.
Moreover, after the validation of Kuruluthuda paddy, it was noticed

that hardness values were not distributed normally in the population
statistics and a range of hardness value was lack in the obtained dis-
tribution profiles as shown in Fig. 2(a). The missing hardness data
ranges in Y fit of the PLS model for Kuruluthuda variety were between
14 and 16, 21–23 and 26–30N force range. In order to avoid the missing
range and to be widen the data range, a combined PLS model was

developed by both varieties. Moreover, the varieties were stored in in 4
different temperatures levels for 6 months and acquire spectra in con-
secutive time intervals to build a model with a wide range of hardness
information available in the model for successful hardness prediction.

3.3. Development of wide range NIR model

Step 3; The model set with AT-362 and Kuruluthuda (X) four tem-
perature levels (X) store for 6 months.

NIR spectra were recorded from 144 samples of AT-362 and
Kuruluthuda stored at 26, 30, 34 and 38 °C temperatures for 6 months
as four spectra per sample (n=576) because changing storage tem-
perature and time were positively correlated with the paddy hardness
in this study. Therefore, the expected wide range of hardness data were
obtained. When temperature is increasing, the main part of rice kernel
consists of starch granules with semi-crystalline structure become
greater due to decreasing moisture content in grains (Enevoldsen and
Juliano, 1998). Therefore, resistance of kernel to breakage is increased.
Furthermore, increasing storage temperature up to 37 °C enhanced the
aging of the stored paddy (Pearce et al., 2001) which leads to increase
hardness of the starch granules and limited the granule hydration and
swelling due to starch protein interaction (Tulyathan and
Leeharatanaluk, 2007). In addition, increased hardness of rice over
time is associated with starch retrogradation process which convert the
starch in to more stable crystalline form (Mutters and Thompson,
2009). We expected these physiochemical scenarios would help to ac-
cumulate reasonable hardness variation in our data matrix which will
reasonably compatible with the sample spectra coming from pro-
spective new variety samples. After removing possible outliers, ob-
tained PLS regression function of measured versus predicted hardness
of paddy under the mean center pre-processing with align math trans-
formation option are shown in Fig. 1(c).
In this attempt, after accumulation of data, the statistic illustration

revealed that considerable amount of missing data ranges observed in
the previous model (Fig. 1(b)) were fulfilled in new prediction model
(Fig. 1(c)) but, paddy hardness prediction was not improved
(R2= 0.865 and SEV=1.221) up to the expected level. It can be
clearly identified that large number of hardness data were concentrated
between 15 and 20N force range and missing hardness data were still
observed between 25 and 30N force range in Y fit of the PLS model even
this step. Therefore, in order to acquire comparatively higher hardness
values, combined PLS model was developed with parboiled paddy as
the paddy have shown substantial hardness increment after parboiling
in the studied conducted in parallel during this study.

Step 4: Upgrading the combined model with parboiled paddy

Hardness of parboiled paddy is generally higher than raw paddy due
to gelatinization and retro-gradation of starch during the soaking and
steaming process (Poritosh et al., 2006). Since the missing data was

Plate 1. NIR Data acquisition.

Table 2
Different types and number of samples used in model development in this study.

Step No Process Variables No of samples No of spectra

1 Primary model Variety (AT-362) 30 120
2 Validation Variety (Kuruluthuda) 30 120
3 Calibration Varieties (AT-362, Kuruluthuda)

Temperature levels (26, 30, 34,38 °C)
Storage time (30,60,90,120,150,180 days)

144 576

4 Calibration Varieties (AT-362, Kuruluthuda);
Temperature levels (26, 30, 34,38 °C)
Storage time (30,60,90,120,150,180 days)
Processing techniques (Raw, Parboiled)

288 1152

5 Validation Moisture content (initial and after 12hr soaking; 2,4,6,8,10-day interval)
Varieties (AT-353 and AT-401)

60 240
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distributing within comparatively high hardness values range, data
were collected from both raw and parboiled paddy in AT-362 and
Kuruluthuda stored at 26, 30, 34 and 38 °C for 6 months to increase the
paddy hardness. The NIR spectra were recorded from 288 samples as
four spectra per sample (n=1152) for calibration set. After removing
possible outliers, the obtained PLS regression function of measured
versus predicted hardness of paddy under optimum model configura-
tion options are shown in Fig. 1(d).
Result of this PLS analysis observed that best fitted model could be

obtained with strong R2=0.946 and low SEV=1.204 to evaluate
paddy hardness. There was no missing data range in the developed
model as well. Data normally distributed as shown in Fig. 2(b) while

data was ranging between 12.5 and 32.5N without showing any missing
values.

3.4. Validation of the best fitted model

The developed best model was validated using new paddy samples
in difference hardness ranges. At-353 and At-401 paddy varieties were
soaked in water for 12 h and collected the samples at 2 day intervals to
get range of hardness data for final validation set. Total number of
samples collected for prediction set was 60 (n= 240)). Model valida-
tion with other 2 paddy varieties found to be yielded a better perfor-
mance related to hardness between predicted values and measured

Table 3
Prediction results of Paddy Hardness under PLS Model Configurations.

Math transformation Preprocessing method

Auto Scale Mean Center Range scale Variance scale Pareto

SEC R2 SEC R2 SEC R2 SEC R2 SEC R2

Align 0.912 0.865 0.918 0.921 2.564 0.780 3.166 0.716 0.913 0.865
1st derivative 2.118 0.792 2.098 0.797 2.135 0.788 3.457 0.558 2.093 0.798
Log 10 2.178 0.779 2.181 0.778 2.497 0.706 2.198 0.774 2.180 0.778
2nd Derivative 0.909 0.835 1.936 0.830 1.932 0.831 3.195 0.616 1.913 0.835
MSC 2.119 0.792 2.148 0.786 2.140 0.787 2.139 0.787 2.133 0.789

Fig. 1. PLS regression functions of predicted versus measured hardness in model development (a) Step 1; (b) Step 2; (c) Step 3; (d) Step 4; (e) Step 5.
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values (SEV=1.711, R2= 0.936) using same pretreatments as high-
lighted in Figure (e). These results indicated that the paddy hardness
can be rapidly and accurately predicted from NIR reflectance spectro-
scopy using PLS regression.
Similarly, Qingyun et al. (2007) developed a multiple linear re-

gression model for detecting hardness of cooked rice using wavelengths
of 540, 640, and 970 nm only and recorded R2=0.59; SEC 0.32.
Meullenet et al. (2002), and Champagne et al. (2001) also developed
models for detecting hardness of cooked rice using wavelengths of
400–2500 nm and recorded R2 values in validation were 0.59 and 0.67
respectively). However, Lapchareonsuk and Sirisomboon (2015) de-
veloped a successful model for detecting hardness of cooked rice using
more similar wavelengths (600–1100 nm) which used in this experi-
ment and reported R2 and SEV were 0.842 and 0.364 respectively.
Furthermore, similar model was developed by Siriphollakul et al.
(2013) for predicting hardness of brown rice using wavelength range of
1400–2400 nm and R2 and SEV were 0.777 and 0.185 respectively.
However, our prediction values were better than that previously ob-
tained values. It may be due to wider range of hardness values we ac-
cumulated by practicing multiple methodologies. The targeted best
fitted regression line in the PLS algorithm could be obtained after only
accumulating the wide range of spectral data for paddy hardens by
following the new approach i.e. observing the regression line and po-
pulation distribution for missing range and completing them by adding
sample with induced variability by perturbation such as storing at
elevated temperature, soaking, parboiling etc..

3.5. Important wavelength for detection of paddy hardness

The regression vector coefficients can be used to show the most

important wavelength elaborated in the detection of hardness of paddy.
In this experiment, both positive and negative regression coefficient
values were obtained as shown in Fig. 3. The regression vector coeffi-
cients indicated that wave bands; 621, 669, 710, 799, 843, 1048, 1064
and 1066 nm seem to be of greatest importance in prediction of hard-
ness.
It was found that absorption peak bands of NIR spectra for starch,

protein, oil, cellulose and water were 1064, 1016, 928, 914 and
1044 nm respectively (Williams, 2003). Similarly, wavelengths showed
peaks at around 1066, 1016, 928, 914 and 1044 nm in this study as
highlighted on Fig. 3. Therefore, it can be proved that hardness of the
paddy was affected by content of starch, protein, oil in the grain kernel
and cellulose and water in the outer layer of husk. These substances
including proteins comprise many N–H groups, fats and oils contain
many C–H groups, water contains O–H groups, and so on. Moreover,
protein, starch, oil and cellulose all contain –CH2- groups and –OH–
groups that make identification possible grain products (Williams,
2003). Lapchareonsuk and Sirisomboon (2015) found that peak of re-
gression coefficients of textural qualities of cooked rice such as adhe-
siveness, hardness, and stickiness, were ranged between 935 and
990 nm. The peak at 938 nm shows the frequency characteristic of C–H
stretch third overtone of CH2 while peak at 990 nm is the vibration
band of the O–H stretch second overtone of starch. In the same way,
peak of regression coefficients for rice were noticed within that range
(914, 927, 941, 953, 993 nm) in our study as well.
Furthermore, it can be clearly shown that the regression vector

coefficients were more or less similarly distributed throughout the
spectrum without concentrating to the visible region. Therefore, it can
be concluded that the color of paddy grain which might be considered
as a common character to be changed due to various reason have not

Fig. 2. Frequency of hardness data (as force in Newton) distribution of model development (a) Step 1 and (b) Step 2.

Fig. 3. Regression coefficient plot of optimum models for evaluation of hardness of paddy.
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been in a prominent factor to quantify the hardness of paddy samples in
the final model. This observation would be considered as an indication
of reliability in the final outcome of this research.

4. Conclusions

In conventional INR approach, a successful prediction is perceived
when the model and prediction sets are executed between uniform and
similarity groups of materials. However, this research has successfully
demonstrated that NIR can be expand its limits by accumulating wide
range of variation in the spectra for the target Y variable by following a
systematic approach i.e. observing the regression line and population
distribution for missing range and completing them by adding sample
with induced variability by perturbation such as storing at elevated
temperature, soaking, parboiling etc. have been demonstrated giving
substantial improvements to the prediction models leading wider ac-
ceptancy to the incoming new samples to be predicted.
The finally configured model has successfully predicted the spectra

obtained from new independent varieties with the performance rates of
SEV=1.711 and coefficient of determination R2=0.936 which could
be considered as improved model performance to the existing predic-
tion results with regards to the completely independent new variety
prediction. This bring additional benefits to producers, marketers and
users to evaluate the quality status range of market available paddy at
whenever random sampling is needed for quality assurance and va-
luation without constructing separate model for each variety. This
could be considered as an added meaning to the rapid nature of NIR as a
tools where the users are prompt when expressing the merits of NIR as a
rapid detection tool.
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