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I. INTRODUCTION TO INTEGRAL EQUATIONS 

 Differential calculus and Integral calculus are two 
concepts tied together by the Fundamental Theorem of 
Calculus where integration is regarded as the opposite 
operation of differentiation. This paper focuses on integral 
equations, where the unknown function appears inside a 
definite integral. This category of equations is not familiar 
among applied mathematicians compared to differential 
equations, however has a vast potential in both 
applications and theoretical development. The general 
form of an integral equation in      is defined by  

              ∫             
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Here  ,   and   are functions of independent variable  . 
       represents the way of incorporating the effect of 
     in the integral.   
 It has been observed that these integral equations fall 
under two main categories: those with variable limits of 
integration called as Volterra integral equations and those 
with fixed limits of integration called as Fredholm integral 
equations [6]. The function        appears within the 
integral is called the Kernel, which is the main structural 
entity in both modeling and solving process of integral 
equations. 
 

II. INTEGRAL EQUATIONS AND DISEASE TRANSMISSION  

       Health officials, scientists and researchers have an 
important role to play in the control of diseases by 
applying effective and efficient management, prevention 
and control measures. Thus, mathematical modeling of 
disease transmission has gained a lot of interest in 
scientific research. 
          The classic models in disease transmission deal with 
the rate of change of susceptible, infected and immune 
population. In the natural circumstance, history of 
infection, immune response, burden of a disease and effect 
of prolonged treatments are some aspects to be 
considered in modeling disease transmission. The above 
phenomena of accumulation type need to be encountered 
in a model to have effective measures on disease 
transmission. These phenomena can be modeled using 
integral equations. Current study is conducted to discover 
new approaches to enhance the applicability of integral 
equations in the modeling process of disease transmission.  
 

III. SOLVING APPROACHES 

In modeling the transmission of diseases considering 
characteristics on accumulations, kernel will hold a vital 
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role since the modeling and solving process depends on 
the structure of the kernel.  
     Among the solving techniques of integral equations, 
Laplace transform shows a definite advantage on a 
particular kernel type called difference kernel. In a 
difference kernel,        depends only on the difference 
     .  i.e.               
 
  Volterra integral equations with difference kernel 
such as  

          ∫             
 

 

 

can be easily solved using the Laplace transform method, 
since the following convolution property is easily 
applicable [8]. 
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 Method of series technique is possible in solving the 
Fredholm integral equations with degenerated kernel 
where        ∑           
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After exchanging the summation with integration, 
degenerated kernel reduces the Fredholm integral 
equation to system of linear equations as  

   ∫            
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 Method of successive approximation is another 
approach which can be used in the presence of resolvent 
kernel. Numerical techniques based on trapezoidal rule, 
Simpson’s rule will also be of extremely useful to solve the 
highly complicated problems [2].  
 

IV. STRUCTURING THE INTEGRAL 

Since there is a potential structural refinement by 
integral calculus for the disease transmission, this study 
can be carried out in several perspectives. 

 
Case I: Possible incorporation for a population 

subjected to disease transmission can be observed in the 
following equation [6].  

             ∫             
 

 

 

This is a model for forecasting a certain population      
which can be either the evolution of infected population or 
breeding of infective agents such as parasites.  Here       
is the initial population,   is a constant and        is the 
survival function which can be incorporated with the 
natural context such as effect of immune response and 
prolonged treatment. Applicability of above structure is 
extremely useful since immune response occurs with a 
particular time lag which can be modeled via a function 
like        .  
 A certain model of population dynamics of acquired 
immunity to parasite infection reveals the rate of change 
in mean worm burden     (i.e. proportion of adult worms 
per host) as follows [7]. 
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 Here I is the cumulative effect of increased mortality 
of the worms by immune response and      is the mean 
number of tissue dwelling larvae in a host at time  . 
Considering the earlier population model for      in this 
same situation, there will be a possibility of expressing   
as an easier explicit formula. This is due to the existence of 
a difference kernel which enables to solve the integral 
equation by applying Laplace transforms for convolution.  
     
 
      Case II: Replacing Riemann integration by Lebesgue 
integration would be applicable, since in approaching 
accumulation of quantities related to disease transmission 
incorporates with a certain quality of discreteness. In most 
of the situations such as quantifying the risk of a disease, 
the present state relates to the accumulation of what has 
happened to it previously [6]. The following integral 
equation in     , conveys the same context where 
accumulation of previous states has been accounted in its 
structure. 

     ∫             
 

 

 

 As quantities brought by      incorporates with a 
quality of discreteness, Lebesgue integration along with 
the almost everywhere principle  would be preferred over 
Reimann integration. In a particular situation of 
quantifying the risk via blood sampling, each observation 
could indicate temporal changes. Sometimes such 
indications have no contribution to the history of infection, 
which is responsible for the immune response. On the 
other hand, quick losses in observations would not harm 
to the continuous immune response as shown below in FIG 
1 [5]. Here   represents an observational measure on 
disease taken via blood sampling.  
 
 
 



 
 
 
 
 
 
 
 Therefore in such zero and non-zero accumulations, 
Lebesgue integration will be more applicable than 
Riemann Integration, in particular to mimic a situation 
with higher degree of discreetness such as counting with 
rational numbers in an interval of real numbers. 

 
Case III: In modeling disease transmission, 

corresponding populations would depend on 
environmental factors such as climate support for the 
infection. In some diseases this environmental factor may 
have the seasonal effect to be concerned such as the 
spread of dengue fever changes over rainy season. 
Considering these factors, there is an observable structural 
refinement for prevailing models. For instance, in the 
following  Lotka's integral equation, probability that a 
female lives to a certain age    given by      and the 
probability that she will give birth to a female given by 
     are incorporated in modeling the birth                 rate 
of  a population (    ) [6]. Here      has a measure on 
females already born.   

          ∫                  
 

 

 

In this type of a model for mosquitoes transmitting 
dengue virus, term      heavily depends on rainfall. In 
favorable conditions      would be set to even 1 and a 
structural refinements can be carried out for other 
degrees of favorability. Complexity of      would be 
increased when more and more climatic factors such as 
temperature, humidity etc. are involved subject to the 
availability of data.      

 

V. CONCLUDING REMARKS 

It is possible to model most of the general phenomena 
in disease transmission via integral equations. Solving 
aspects may encourage having some integral structures, 
such as convolution theorem in Laplace transform allows 
to incorporate lags and delays. Furthermore, such 
structures can be used as alternative to complicated 
differential equations in some scenarios.  

Often in modeling with integral equations, continuous 
functions are expected allowing Reimann integration to 
occur. However, some phenomena are there with higher 
degree of discreteness, where the Lebesgue integration is 
preferred. Such structures are facilitated mainly by almost 
everywhere principle.  

Structural refinements to integrals can be carried out to 
cater the complexity of a phenomena. Usually it occurs in 
disease transmission modeling due to the heterogeneity in 

influencing factors such as climatic conditions. In those 
situations, weight on quantified variables via probability 
function is incorporated.   

Applicability of integral equations can be enhanced 
through structuring integrals in different ways. It ranges 
over catering many phenomena that accumulations are 
involved in disease transmission.              
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FIG. 1 (A) - Almost everywhere zero and (B) - almost everywhere 
non-zero  


