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Abstract- Many mathematical models have been developed through differential equations to understand age-
dependent infectiousness of diseases. These models face the complexity of heterogeneity of disease transmission
in different age groups which leads to complicated parameter estimation. Proposed model in this paper conveys the
applicability of integral equations to interpret the age dependency on general behavior of infectiousness. Acquired
immunity and mobility of hosts are considered here as main influencing factors. The degenerated kernel plays a
major role in this proposed structure allowing time-dependent influences too.
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1 Introduction

The chronological age of an individual is a vital factor in assessing the transmission and morbidity of infectious
diseases. By the infectiousness of such a disease, we understand the state or condition of being infectious. Age-
dependent characteristics of infectiousness occur due to biological factors of hosts and vectors, environmental
factors dominated by exposure to weather conditions, and behavioral factors of infected and susceptible individuals
[3]. Time-dependent characteristics of infectiousness are also influenced by some of these factors, for instance
seasonal weather patterns may affect to the rate of infection. The diseases like influenza, mumps, smallpox,
river blindness, tuberculosis, malaria, filariasis and dengue have the potential of being a pandemic disease due to
different types of influences as biological, environmental and behavioral. Mathematical models can be used to link
these influences to observe emergent dynamics of infection.

The main aim of this paper is to mimic the infectiousness according to the age-scale of an individual via
a dependent variable catering the risk of being infectious. Two main influential factors based on age, acquired
immunity and mobility are considered here. Acquired immunity is a biological factor while mobility is a behavioral
factor. Day-to-day mobilization of humans affects the transmission as more interaction between infected and
susceptible individuals occur. Middle-age is more vulnerable in that sense. The time-scale is also incorporated via
the proposed integral equation approach.

Often mathematical models via systems of differential equations are developed to incorporate age-dependency
on infectiousness [1]. More advanced models are with partial differential equations catering both time and age as
independent variables [2], [8]. These models require many data for parameter estimation to model heterogeneity
of disease spread in different age groups. In addition, systems with integro-differential equations have also been
developed [6]. However, proposed integral equation approach simply requires only one type of equation infusing
acquired immunity and mobility along with some time-dependent incorporations too. It would easily illustrate
general behavior of infectiousness against age according to a given behaviors of acquired immunity and mobility.



2 Model formulation and solution

At its simplest, the effect of morbidity can be described by enumerating the risk of being infectious in different
age groups. It is observed that this risk is accumulated with the mobility patterns of each individual influenced
by environmental conditions too. Thus, a model can be established by taking excessive risk due to mobility
proportional to past experience of the risk. Here in Eq. (1), we take f (a) as a function of age a representing the
risk level according to acquired immunity. Next, u(a) represents the overall risk level and then u(a)− f (a) is the
excessive risk.

u(a)− f (a) ∝

∫ b

0
K(a, t)u(t)dt (1)

where K(a, t) = ∑
n
k=1 ak(a)bk(t)

By introducing a proportional constant λ , model equation becomes;

u(a)− f (a) = λ
∫ b

0 K(a, t)u(t)dt

u(a) = f (a)+λ

∫ b

0
K(a, t)u(t)dt (2)

The proportional constant shows the incorporation of the accumulation given by the integral over the lifespan a1
to the difference u(a)− f (a). It is clear that this excessive risk is influenced by the accumulation of environmental
and behavioral influences. The behavioral infectiousness that depends on the contact patterns of an infected is
generally boosted with environmental impact such as weather factors.

We propose here a term called kernel K(a, t), to cater both age-scale a and time-scale t. Note that t also runs
in a same way as a in its domain. Its general composition ∑

n
k=1 ak(a)bk(t) incorporates interactive effect of risk

levels given by age-dependant influences via ak’s and time-dependant influences via bk’s. In our approach, we take
simply that ak’s represent mobility data and bk’s represent weather data.

As Eq. (2) falls under the classification of the Fredholm integral equations, it owes several attributes in solving
depending on the characteristics of kernel K(a, t) [4]. The structure of K(a, t) used in Eq. (2) is called degenerated
kernel. The solving technique is based on transforming the equation into a system of linear equations as follows.

u(a) = f (a)+λ
∫ b

0 ∑
n
k=1 ak(a)bk(t)u(t)dt

u(a)− f (a) = λ ∑
n
k=1 ak(a)

∫ b
0 bk(t)u(t)dt

Letting ck =
∫ b

0 bk(t)u(t)dt,

u(a) = f (a)+λ

n

∑
k=1

ak(a)ck (3)

The solution to the original equation Eq. (2) counts on ck values which can be figured out by converting Eq. (3)
into a system of n linear equations given below.

cm = fm +λ

n

∑
k=1

a(mk)ck; m = 1,2, ...,n (4)

Finally, the solution for u(a) is obtained through back substitution on Eq. (3) by the ck values obtained from
the n linear equations in (4).

3 Results and sensitivity analysis

We implement model equation (2) using hypothetical curves for biological, behavioral and environmental influ-
ences. As a fundamental illustration, f (a) represents the risk according to acquired immunity and only one influ-
ential function ak(a);k = 1is considered for mobility and one function bk(t) ; k = 1 is used for weather influences.
The model output u(a) adequately describes the general dynamics of the age-dependency of infectiousness.



In the following illustration in Figure 1, f (a) depicts a situation of high risk in younger ages and later saturated
in lower risk with maturity. Risk level due to mobility is shown by a1(a), carrying higher risk in middle ages, which
is evident in many host populations. The function b1(t) is merged to the model as a periodic function with one
peak per year simply representing a possible rainfall effect ultimately on infectiousness. We set the lifespan into
80 years and hypothetical curves within the range [0,1] allowing an easier base for comparisons.
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Fig. 1: Age-dependent risk of infectiousness due to mobility, acquired immunity and weather influence

Figure 1 shows a general validity as overall risk level indicated by u(a) is higher than f (a), indicating the
increase in risk due to mobility. Moreover, overall u(a) has approached a peak between 20 and 30 years and latter
part settles with a saturation. These two attributes are not observable simultaneously in either f (a) or a1(a). The
two influential functions f (a) or a1(a) are carrying either a peak (in a1(a)) or a saturation (in f (a)), but not both
phenomena.

These type of different situations can be simulated by changing the proportional rate λ accordingly. The Figure
2 depicts a sensitivity analysis with different λ . What readily observable is that peaks slightly move towards higher
ages and saturation may vanish with higher λ .
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Fig. 2: Sensitivity analysis on age-dependent risk of infectiousness



For further interpretations, Figure 3 illustrates excessive risk given by u(a)− f (a). This analysis indirectly
paves the way to estimate suitable λ for a host population by comparing with another population. In that purpose,
the risk level can be mimiced via the prevalence of the disease by age. Such observational and experimental
findings are available for some diseases in literature supporting this claim [9].

0 10 20 30 40 50 60 70 80

chronological age (years)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

E
xc

es
si

ve
 R

is
k

Excessive Risk generated by behavioral and environmental influence 

lambda=10
lambda=5
lambda=1

Fig. 3: Excessive risk on age-dependent infectiousness

4 Discussion and Conclusion

When the parsimonious modeling perspective is concerned, the proposed integral equation approach has a reason-
able ability of expressing heterogeneity of biological, behavioral and environmental influences on age-dependent
infectiousness of a disease. At the end, model accuracy is a matter of choosing suitable curves for each influencing
function.

Furthermore, this model can be used as a guide to formulate hypotheses and data collection strategies to mea-
sure the risk of a disease. For instance, when different immunity mechanisms play in different ages, f (a) curve can
be tested with different options. One motivation towards this is the fact that some diseases accountable with innate
immunity in early ages and subsequently with acquired immunity. Different options on mobility related influences
can be brought via ak functions. The degenerate kernel facilitates any finite number of such functions. Moreover,
time-scale connections with such ak functions can be produced by different bkfunctions.

It is evident that integral approach reduce the inconvenience of many parameter estimations required in models
with systems of differential equations. Here in this model, the proportional constant λ is the only visible parameter
to be estimated as all the other evaluations can be incorporated with general functions proposed for any influential
factor. As depicted in sensitivity analysis and excessive risk analysis, model based experiments can be carried out
to estimate λ according to a selected set of influential functions. Next, reliable predictions can be made using those
models.
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