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A collection of oscillatory basis functions generated via an integral equation is investigated here. This is a new approach in the
harmonic analysis as we are able to interpret phenomena with damping and amplifying oscillations other than classical Fourier-
like periodic waves. The proposed technique is tested with a data set of dengue incidence, where different types of influences
prevail. An intermediate transform supported by the Laplace transform is available. It facilitates parameter estimation and
strengthens the extraction of hidden influencing accumulations. This mechanistic work can be extended as a tool in signal
processing that encounters oscillatory and accumulated effects.

1. Introduction

Harmonic analysis is central to many applications in signal
processing. Its applicability does not restrict to physical
waves, showing potential applications in many phenomena
from biology to finance [1]. Superpositioning of basic waves
to represent a wave or a function is the key mechanism in
harmonic analysis. Fourier analysis is a frequently used
method in signal processing, where sinusoidal waves perform
as basis functions [2]. It is the baseline in many comparison
studies as well. For instance, Broadbent and Maksik utilized
the Walsh transform in analyzing rectangular waves [3].

In addition, statistical evaluations such as correlation
analysis can also be adopted in studying signals, particularly
time series. However, some details in multiple periodicities
or unrecognized variables would not be extracted [4]. Thus,
we opted to build our work advancing upon the Fourier
series. Furthermore, there are techniques of accelerating con-
vergence in the Fourier series, for instance, incorporating
derivative information at the endpoints [5]. However, our
approach allows changing harmonic patterns rather than
restricting them into periodic waves.

As attributed to the Fourier series, periodic basis func-
tions may not underlie every application. Therefore, variants
with damping and amplifying oscillations would be subse-
quent improvements. Here, in this paper, we propose such
work via the Volterra integral equation (1), which has been
implemented to model population growth [6].

n tð Þ = n0 f tð Þ + k
ðt
0
f t − τð Þn τð Þdτ: ð1Þ

The model equation (1) describes the population nðtÞ
according to the survival incorporated by a function f ðtÞ as
age increases. It caters to an accumulated effect on the popu-
lation as each surviving individual contributes to newborns.
We alter its ideology into a context of epidemiology to mimic
the incidence of infectious diseases. Then, an accumulated
process of already infected individuals governs further inci-
dence. Other external influences can also be incorporated.

We introduce a harmonic process carrying both sinusoi-
dal and exponential effects to the solutions of (1). It endows
with damping and amplifying oscillations other than to clas-
sical periodic waves. Next, we plan to extract influencing
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function f ðtÞ to understand the process behind each wave.
This activity is further motivated by the difference kernel kf
ðt − τÞ in (1), which leads to potential solutions for nðtÞ via
Laplace transforms. We validate this new harmonic analysis
for dengue incidence with a comparison of the classical tech-
nique of discrete Fourier series.

2. Material and Methods

2.1. Preliminaries and Alterations to the Integral Model. In
the exact terminology of the model equation (1), nðtÞ is the
total population at time t with an initial value n0. Here, f ðtÞ,
the survival function, represents the fraction of people sur-
viving to age t. Hence, f ðtÞ depicts the age-dependent poten-
tial of human survival, which is the main routine of the
model. The parameter k represents the births per individual,
and the argument t − τ in the kernel kf ðt − τÞ catches a lag-
ging effect due to the time of birth.

In our move towards dengue incidence, f ðtÞ acts as an
influencing function that tolerates ultimate transmission
dynamics. For instance, when nðtÞ detects the incidence, then
f ðtÞ can represent an influencing factor such as rainfall pat-
terns. Later, we aim to extract hidden influencing functions.
Disease-specific interpretations can be aligned with the influ-
ences by vector mosquitoes, weather patterns, and biological
or behavioral factors of human hosts [7].

Definition 1. We define nðtÞ to be a measure on the number
of infected cases (incidence) at time t influenced by an
influencing function f ðtÞ.

Our aim is to use nðtÞ directly to formulate basis func-
tions that approximate dengue incidence data.

Definition 2. We take f ðtÞ = λect sin ðat + bÞ to cater to
damping ðc < 0Þ, amplifying ðc > 0Þ, or periodic ðc = 0Þ oscil-
lations in influencing functions.

The manipulation of f ðtÞ is twofold as articulating a
sinusoidal pattern as a base and allowing damping and
amplifying variants through exponential effects. Here,
parameter a determines the wavelength or frequency and
parameter b determines any shift due to initial require-
ments in the absence of an exponential effect. The role
of the parameter λ is also twofold as standing for scaling
requirements and partially responsible for the final linear
combination of basic waves.

2.2. Model Solution. Now, we present the solution of the
model equation (1) and its direction to the proposed applica-
tion in dengue incidence.

Proposition 3. The solution of (1) is given by nðtÞ =L−1

fðn0Lf f ðtÞgÞ/ð1 − kLf f ðtÞgÞg, and it has the following
two cases for f ðtÞ = λect sin ðat + bÞ.

Case 1. (oscillatory solution). nðtÞ = n0λe
βtðP cos μt +Q

sin μtÞwhere μ2 = a2 − kλa cos b − ððkλ sin bÞ/2Þ2 > 0, P =
sin b, Q = ða cos b + ððkλ sin2bÞ/2 ÞÞ/μ, and β = c + ððkλ sin
bÞ/2Þ:

Case 2. (nonoscillatory solution): nðtÞ = n0λe
βtðP cosh μt +

Q sinh μtÞ where −μ2 = a2 − kλa cos b − ððkλ sin bÞ/2Þ2 > 0
and other formulas remain the same as in Case 1.

Proof. By applying the Laplace transform to (1) with the
convolution property, we obtain LfnðtÞg = n0Lf f ðtÞg
+ kLf f ðtÞgLfnðtÞg, which provides nðtÞ =L−1fðn0L
f f ðtÞgÞ/ð1 − kLf f ðtÞgÞg.

Since Lf f ðtÞg = λðððs − cÞ sin b + a cos bÞ/ððs − cÞ2 +
a2ÞÞ, we arrive at

If a2 − kλa cos b − ððkλ sin bÞ/2Þ2 > 0, then we reach the
solution in Case 1 and if a2 − kλa cos b − ððkλ sin bÞ/2Þ2 < 0,
then we have Case 2.

Next, Proposition 4 presents the inverse process of
obtaining f ðtÞ that ensures the analytical existence of f ðtÞ
for a given nðtÞ.

Proposition 4. f ðtÞ =L−1fðLfnðtÞgÞ/ðn0 + kLfnðtÞgÞg:

Proof. The result is immediate by the earlier expression:

L n tð Þf g = n0L f tð Þf g + kL f tð Þf gL n tð Þf g: ð3Þ

If the Laplace inverse is not straight forward, one would
try Bromwich contour integrals [8, 9].

Definition 5. We structure the superposition upon nðtÞ as Nð
tÞ =∑∞

i=1niðtÞ, where niðtÞ = n0iλie
βitðPi cos μit +Qi sin μit Þ

is the basis function corresponding to the influencing function
f iðtÞ = λie

cit sin ðait + biÞ for each case of i = 1, 2,⋯. We call
this NðtÞ as an overall transmission potential.

Approximations in finite context can be obtained by
NmðtÞ =∑m

i=1niðtÞ, where m number of harmonics are used.
This finally leads to approximate incidence data in the least
square sense.

L n tð Þf g = n0λ
s − cð Þ sin b + a cos b

s − c − kλ sin bð Þ/2ð Þ2 + a2 − kλa cos b − kλð Þ2 sin2b� �
/4

� � : ð2Þ

2 Journal of Applied Mathematics



2.3. Parameter Estimation. Since natural oscillations can
be expected in epidemiological phenomena, we test with
Case 1 of Proposition 3. Weekly dengue incidence data from
2013 to 2015 reported in the Colombo Municipal area, Sri
Lanka [10] are used to extract basis functions and subse-
quently the influencing functions. This municipal area is
highly vulnerable to dengue transmission due to the densely
urbanized environment.

Suppose a trigonometric polynomial of order m, TmðtÞ
= A0 +∑m

i=1Ai cos iωt + Bi sin iωt is taken to approximate
data in a discrete sense. First, we determine the Fourier har-
monics FiðtÞ = Ai cos iωt + Bi sin iωt,i = 1, 2,⋯,m, and the
intercept term A0 (i.e., F0ðtÞ) using the MATLAB curve
fitting toolbox that minimizes ∑p

j=1ðdj − Tmðt jÞÞ2. Here, dj
refers to the data value at a point t j for j = 1, 2,⋯, p.

Next, we estimate initial guesses for each set of
parameters of f iðtÞ infused in niðtÞ. These estimations
are obtained by aligning niðtÞ with sequential harmonics
FiðtÞ separately. It is fulfilled by a trial and error method
with a reasonable tolerance (ε) on the squared deviation
between each niðtÞ and its Fourier counterpart FiðtÞ. Here,
near-periodic behaviors are attributed into niðtÞ while an
exponential effect finally plays the role of fine-tuning the
overall fit.

The following result guarantees that no complete restric-
tion is employed on the exponential effect of f iðtÞ while
forcing the removal of the exponential effect in the space
of niðtÞ.

Proposition 6. β = 0 does not necessarily imply c = 0.
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Figure 1: Dengue incidence data (dots), Fourier fit (blue curve), and model fit (red curve) for m = 5, 6, 7, 8.
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Proof. The result is straightforward as we have β = c +
ððλk sin bÞ/2Þ.

Next, we initialize the parameters as described above and
minimize ∑p

j=1ðdj − ðA0 +Nmðt jÞÞÞ2 that represents the devi-
ation between data and superposition output A0 +Nmðt jÞ.
For that, we implement a MATLAB fminsearch tool, which
uses the Nelder-Mead simplex algorithm [11]. By using the
resultant parameter values, we can determine all niðtÞ and
f iðtÞ.

2.4. Outlook of Convergence. It is obvious that both the Fou-
rier fit and the model fit yield better approximations of data
when the number of series increases. For a given number of
series, our model fit may reach data much closer than that
of the Fourier fit by the effect of eβi t in niðtÞ. It is assisted
by the boundedness of t and the possibility of any real value
for βi. Note that the terms involving t in the Fourier fit are
sine and cosine terms allowing only oscillations tolerated by
respective coefficients. However, in the model fit, one may
see the adaptability of coefficients as per the effect of eβi t .
Options on βi are indirectly subjected to the condition on
μi

2 (Proposition 3). Notwithstanding, sophisticated search-
ing abilities in the software may reduce its burden in compu-
tational trials.

3. Results

3.1. Curve Fitting. In Figure 1, Fourier fit TmðtÞ and model fit
A0 +NmðtÞ are illustrated. We add the intercept term A0 into
NmðtÞ to compromise with actual data. At the trial and error
stage, the tolerance ε < 103. We start with m = 5 and finish
with m = 8, which is the maximum number of harmonics
allowed in the MATLAB Fourier fit.

Graphs in Figure 1 visualize the reliability of the fitted
curves for different m, and Table 1 contains the sum of
squared deviations. It shows that A0 +NmðtÞ fits well com-
pared to its corresponding TmðtÞ for each m. Therefore, the
basis function niðtÞ can further be used as a reliable interme-
diate tool to extract f iðtÞ.

One can observe that the model fit and the Fourier fit
mainly differ at the extremes of the data set. It is an optimistic
rectification over Fourier harmonics to achieve a better fit via
the model (1). This hints the effect of eβi t in niðtÞ as discussed
in Section 2.4. Figure 2 further illustrates such an effect at an
extreme. Here, the red curve stands for cos t + 0:5 sin t and
the blue curve e0:1t ðcos t + 0:5 sin tÞ contains an exponential
effect. Observe that the additional fluctuations of the blue

curve at the latter stage allow for reaching attributes in data,
which cannot be extracted only via sinusoidal curves. Thus,
the convergence of series at extremes is more equipped with
exponential orders.

3.2. Basis Functions. Since improvements are expected upon
near-periodic waves, it is worthwhile to see the deviations
in trigonometric terms. Figure 3 depicts the relevant cases
in each harmonic for m = 5. We illustrate sine terms (a1‐a5)
and cosine terms (b1‐b5) in the Fourier fit and their counter-
parts in the model fit, excluding the exponential effect.
Besides, harmonics are also presented without A0 (Figure 3,
c1‐c5). The values of iω and μ are indicated to see the
variations.

Here, different oscillatory behaviors are visible as damp-
ing where β < 0 (c1, c3, c4, and c5) and amplifying where β >
0 (c2). The strength of the damping or amplifying nature
can be seen via the size of β. Thus, comparatively large jβj
forces the curves to deviate from the classical periodic nature.
Oscillations around zero preserve the same argument as in
Fourier harmonics, which indicate changes over an intercept
value A0.

In the final model fit, parameter λ is partially responsible
for combining basic patterns of the type eβtðP cos μt +
Q sin μtÞ. Originally, λ determines the amplitude (scaling)
requirements of influencing pattern ect sin ðat + bÞ. Besides,
parameter n0 stands for further compromise of the amplitude
while representing the initial requirements of the model (1).
These parameter values for the above case in Figure 3 are listed
in Table 2. The values of n0λ are also displayed to see the out-
come of combining eβtðP cos μt +Q sin μtÞ type waves in the
overall transmission potential. Thus, our approach estab-
lishes a mechanistic way of seeing different possibilities of
oscillatory harmonics.
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Figure 2: Comparison of the harmonic curve with and without an
exponential effect.

Table 1: Sum of squared deviation for TmðtÞ and A0 +NmðtÞ.

Number of
harmonics (m)

Sum of squared deviations (in 105)
〠p

j=1 dj − Tm t j
� �� �2 〠p

j=1 dj − A0 +Nm tj
� �� �� �2

5 4.0969 3.6827

6 3.5767 3.2802

7 3.3986 2.9556

8 2.9763 2.7575
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According to the size of n0λ, n2 and n5 contain the lowest
impact and the highest impact, respectively, for the overall
transmission. Such observations allow for seeing the quality
(via the positive/negative sign of n0λ) and the quantity (via
the size of n0λ) of contributions made by each harmonic
structure eβtðP cos μt +Q sin μtÞ.

Analogous to Fourier analysis, one can design a power
spectrum by summing the size of coefficients in each
exponentially weighted sinusoidal: eβt cos μt and eβt sin μt.
Table 3 contains those coefficient values and the power taken
as jn0λPj + jn0λQj. Here, also n2 and n5 contain the lowest
power and the highest power, respectively.

Decomposing a data series into basic sinusoidal waves is
the main routine of Fourier analysis. Similarly, our approach
via model (1) accompanies a structure with exponentially
weighted sinusoidals. A noted fact is that in influencing func-
tions also, we can observe a similar context of exponentially
weighted sinusoidal.

3.3. Influencing Functions. The influencing functions f iðtÞ of
the above case in Figure 3 are shown in Figure 4. As described
earlier, these functions incorporate accumulation effects of
influences on disease transmission. Note that if no accumu-
lation is enforced (i.e., k = 0), then the behavior of the basis
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Figure 3: Behavior of sine terms, cosine terms, the Fourier fit (without A0), and the model fit (without A0) for m = 5. (ai), (bi), and (ci)
correspond to the ith harmonic ni, i = 1, 2,⋯, 5.

Table 2: Parameters λ and n0 of harmonics.

Harmonic λ n0 n0λ

n1 -0.7135 95.5996 -68.2103

n2 0.6764 14.3786 9.7257

n3 -4.3978 6.8828 -30.2692

n4 0.9159 114.5023 104.8727

n5 1.1184 106.8252 119.4733

Table 3: Coefficients n0λP and n0λQ.

Harmonic n0λP n0λQ n0λPj j + n0λQj j
n1 -32.5710 -62.5813 95.1523

n2 -7.3502 -6.5090 13.8593

n3 26.7907 -13.3628 40.1536

n4 2.3282 -87.1692 89.4974

n5 -57.8863 100.9381 158.8243
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function is a direct implication of corresponding influenc-
ing function since nðtÞ = n0 f ðtÞ by (1). The strength of the
accumulation can also be estimated via the size of k.
According to the displayed values of k, f3 and f4 contain
the lowest impact and the highest impact on the accumu-
lations, respectively.

Different oscillatory behaviors can be seen as damping,
where c < 0 (f1, f3, f4, f5), and amplifying, where c > 0 (f2).
Here, also, we observe the quality (via the positive/negative
sign of k) and the quantity (via the size of k) of contribu-
tions made by the accumulation

Ð t
0 f ðt − τÞnðτÞdτ in model

equation (1).

3.4. Interpretation Prospects. Dengue is a mosquito-borne
viral disease, which is caused by four virus serotypes
(DENV-1, DENV-2, DENV-3, and DENV-4). Long-term
exposure to one serotype generates immunity to that partic-
ular type, but only partial cross-protection is evident for
other serotypes in the long run [12, 13]. On the other hand,
vector mosquitoes, Aedes aegypti and Aedes albopictus, are
highly adapted to the urban environment [14, 15]. Therefore,
a collective risk may occur in different combinations of virus
types and adapted mosquitoes. This leaves control measures
unstable and inconsistent, which can be identified by ampli-
fying oscillations in basis functions (e.g., n2).

After a set of individuals are infected with dengue, their
transmission capability fluctuates in different ways. As
damping oscillations suggest, that capability may feature in
two ways as aligning with rainfall patterns and aligning with
awareness on disease control. Since awareness increases in
rainy seasons, that combined effect is subject to oscillatory
behavior. The concerned Colombo municipal area is vulner-

able to a peak in rainfall in every six months due to monsoon
and intermonsoon effects [16]. Therefore, as seen in (c4) and
(c5), we may expect a peak in transmission around every six
months. Meanwhile, as shown in (c1), n1 captures a higher
incidence in the middle period of the data series, suggesting
the capability of incorporating long-term influences.

The basis function n3 in (c3) does not indicate strong
peaks but suggests a quicker saturation to a particular trans-
mission level. This is understood via improved mosquito
control and health care irrespective of rainfall effects. More
specific interpretations can be drawn when we consider
more harmonics in Tm and correspondingly in Nm. On the
other hand, one can keep the desired information while
removing any noisy or extraneous waves when we have
more harmonics [1].

4. Discussion and Conclusion

A mechanism for extracting oscillatory behaviors with
damping, amplifying, or periodic nature is discussed in this
work. It is contrasting to the classical harmonic analysis by
Fourier series, where only periodic waves are considered.
The integral equation (1) allows the dependent variable to
incorporate accumulation over a time period. Incidence of
infectious diseases such as dengue can be modeled similarly
as in (1). The whole work amalgamates decomposing data
into basic oscillatory waves and infusing accumulation into
those waves.

The difference kernel in (1) leads to the easier implemen-
tation of convolution property in the Laplace transform. We
consider oscillatory basis functions according to the choice of
influencing functions (Proposition 3). Our approach for
parameter estimation aligns with near-periodic harmonics.
Proposition 6 supports the existence of all oscillatory types
for influencing functions though we impose near-periodic
patterns for corresponding basis functions. In a theoretical
sense, Proposition 4 guarantees a transform between basis
functions and influencing functions. The Laplace transform
entitles with numerous classes of problems, including differ-
ential equations, frequency analysis, and circuit analysis [17].
Our work also shows the importance of its intermediate role
in bridging a model solution to harmonic analysis.

Overall, transmission potential NðtÞ assimilates dengue
incidence better than its Fourier counterpart, as shown in
Table 1. Subject to trialing with Fourier waves for initial
guesses, we tend to fine-tune the overall behavior via an expo-
nential effect in each basis function. Different combinations
of influences for dengue transmissions can be interpreted
via resultant harmonics. In particular, damping oscillations
may extract the combined influence of rainfall and awareness
on disease control. The amplifying oscillations would show
the variations in transmission due to different virus types
and adapted mosquitoes. Extraction of responsible influenc-
ing functions, along with their contribution to accumulation,
leads to more disease-specific interpretations. Cumulative
effects are not restricted to one disease or one phenomenon.
As White et al. [18] presented, for a general health impact,
one must go beyond disease-specific models. Thus, a work
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similar to here can be extended to investigate accumulation
cum harmonic effects.

The model-based harmonic analysis proposed here can
be extended for applications outside epidemiology too.
Any phenomena having meaningful oscillatory basic waves
influenced by accumulation effects are the potential candi-
dates for that.

Data Availability

Data can be retrieved via Epidemiology Unit, Ministry of
Health, Sri Lanka, Available at: http://www.epid.gov.lk.
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