7th International Conference of Multidisciplinary Approaches (iCMA), 2020 Faculty of Graduate Studies, University of Sri Jayewardenepura, Sri Lanka. ISSN: 2386 – 1509 Copyright © iCMA

Page - 114

IN-VITRO INHIBITORY EFFECTS ON ALPHA-AMYLASE AND ALPHA-GLUCOSIDASE AND MODES OF INHIBITION OF Vateria copallifera SEEDS

Mihiranie M.K.S¹, Jayasinghe J.M.J.K.^{2*}, Jayasinghe C.V.L.³ and Wanasundara J.P.D.⁴

¹Faculty of Graduate Studies, University of Sri Jayewardenepura, Sri Lanka ²Department of Food Science and Technology, University of Sri Jayewardenepura, Sri Lanka ³Department of Food Science and Technology, Wayamba University of Sri Lanka ⁴Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Canada jagathj@sci.sjp.ac.lk

Abstract

The objective of present study was to determine the inhibition capacity and modes of inhibition of fresh and debittered Vateria copallifera seed extract against alpha-amylase and alpha-glucosidase enzymatic reactions. In vitro assessment of alpha-amylase and alpha-glucosidase enzyme inhibition capacity was evaluated for 80% ethanol, 80% methanol and aqueous extract of fresh and debittered V. copallifera seeds. Modes of inhibition (Kinetic analysis) were identified using Michaelis Menten and Lineweaver-Burk (double-reciprocal) plots. Results revealed that, 80% ethanol extracts showed the significantly (p<0.05) highest alpha-amylase enzyme inhibition capacity (fresh IC₅₀: 36.97 ± 1.28 μ g/mL, debittered IC₅₀:98.58±0.55 μ g/mL) followed by aqueous extract (fresh IC₅₀: 258.14±12.41 μ g/mL, debittered IC₅₀: 410.44±1.24 μ g/mL) compared to positive control Acarbose. The highest alpha-glucosidase enzyme inhibition capacity is given by 80% ethanol extract of fresh V. copallifera seeds (IC₅₀: 1469.10 \pm 10.01 µg/mL). Kinetic analysis revealed that, 80% ethanol extract inhibited the alpha-amylase competitively although extract displayed a non-competitive mode of inhibition towards alpha-glucosidase. Thus, Vateria copallifera seeds can be considered a good natural resource for the management of Type 2 diabetes with postprandial hyperglycemia due to their traditional acceptability as a healthy food ingredient, availability and low costs with the necessity of further investigations on its active components.

Keywords: V. copallifera, enzyme inhibition activity, Type 2 diabetes mellitus