

Initiating Search

September 7, 2022, 4:16PM

& All: Preparation and Characterization of Antibacterial Copper Doped Activated Carbon from Coconut Coir and its Application in Removal of Hardness and Fluoride in Drinking Water

Search Tasks

Task	Search Type	View
Returned All Results	& All	View Results
Exported: Viewed Reference Detail	References	View Detail

Copyright © 2022 American Chemical Society (ACS). All Rights Reserved.

Internal use only. Redistribution is subject to the terms of your SciFinderⁿ License Agreement and CAS information Use Policies.

CAS 🗱 SciFinderⁿ

Reference Detail

View in SciFinderⁿ

Preparation and characterization of antibacterial copper doped activated carbon from coconut coir and its application in removal of hardness and fluoride in drinking water

By: Madhusha, Chamalki; Jayasundara, Thushani; Munaweera, Imalka; Perera, Chandani; Wijesinghe, Gayan; Weerasekera, Manjula; Sandaruwan, Chanaka; Kottegoda, Nilwala

Activated Carbon (AC) is a promising material that can effect ively purify and enhance the quality of drinking water. Metal doped A C nanohybrids have received a high scientific interest due to their synerg istic effect on both metal dopant and the activated carbon material. In this study, Copper nanoparticles doped activated carbon (Cu-ACC) is synthesized from coconut coir by a novel in- situ chem. reduction method. The successful formation of zero-valent Cu nanoparticles in the Cu-ACC nanohybrid was confirmed using the phase anal. in Powder X-ray Diffraction. Further, the Cu 2p peak in X- ray Photoelectron Spectrum (XPS) of the Cu-ACC composite shows a sharp doublet at 932.7 eV (Cu 2p₃/₂) and 952.9 eV (Cu 2p₁/₂) and there were no shakeup satellite peaks for Cu O. The presence of 873 cm⁻¹ peak in the Fourier Transform IR Spectrum corresponding to the vibrational frequency of Cu-O bond also confirms the successful impregnation of Cu in the Cu-ACC. The SEM imaging/EDX confirms the porous nature of Cu-ACC and the presence of Cu in the sample. The high-resolution Transmission Electron Microscopy anal. further confirms the at. interaction with carbon and the AC matrix. The prepared Cu-ACC was tested for the removal of hardness and fluoride in drinking water under both static and dynamic condit ions. There was a significant improvement in hardness (65%, 1000 ppm initial) and fluoride (60%, 2 ppm initial) removal under dynamic conditions with the usage of 100 mg dosage of Cu-ACC. The resulting Cu-ACC further demonstrates an enhanced antimicrobial activity against three commonly found water pathogens; Escherichia coli, Salmonella typhi, and Shigella flexneri. Thus, the prepared Cu-ACC nanohybrids with antimicrobial properties can be used as a multi-functioning nanomaterial for the treatment of drinking water.

Conference

Source	Database Information
Abstracts of Papers, 262nd ACS National Meeting &	AN: 2021:2635454
Exposition, Atlanta, GA, United States, August 22-26,	CAplus
2021	Company/Organization
Pages: No pp. given	Chemistry
Conference; Article	University of Sri Jayewardenepura
2021	Nugegoda
CODEN: 69SAAP	Sri Lanka
Check for full text	Publisher
Monash A-Z ejournals	American Chemical Society
	Language
View all Sources in Scifinder ⁿ	English

Copyright © 2022 American Chemical Society (ACS). All Rights Reserved.

Internal use only. Redistribution is subject to the terms of your SciFinderⁿ License Agreement and CAS information Use Policies.