GIS-BASED SUSTAINABLE LAND-USE PLANNING: A CASE STUDY OF *BATTICALOA* MUNICIPAL COUNCIL

BY

IBRA LEBBE MOHAMED ZAHIR

2021

GIS-BASED SUSTAINABLE LAND-USE PLANING: A CASE STUDY OF *BATTICALOA* MUNICIPAL COUNCIL

BY

IBAR LEBBE MOHAMED ZAHIR

THESIS SUBMITTED TO THE UNIVERSITY OF SRI JAYEWARDENEPURA FOR THE AWARD OF THE DEGREE OF DOCTOR OF PHILOSOPHY

AUTHOR DECLARATION

"The work described in this thesis was carried out by me under the supervision of Prof. T.M.S.P.K Thennakoon, Prof. Rev. P. Sangasumana Thero and Ms. H.M. Jayani Rupi Herath and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree".

Date:....

.....

I.L. Mohamed Zahir

CERTIFICATION OF SUPERVISORS

"We certify that the candidate has incoperated all corrections, additions and amendments recommended by the examinars to this version of the PhD thesis".

.....

Prof. T.M.S.P.K Thennakoon

Department of Geography

Faculty of Humanities and Social Sciences

University of Sri Jayewardenepura, Sri Lanka

.....

Prof. Ven. P. Sangasumana Thero

Department of Geography

Faculty of Humanities and Social Sciences

University of Sri Jayewardenepura, Sri Lanka

.....

Ms. H.M. Jayani Rupi Herath

Department of Geography

Faculty of Humanities and Social Sciences

University of Sri Jayewardenepura, Sri Lanka

Table of Contents

List of Contents	i-iv
List of Tables	v-ix
List of Figures	x-xiii
Abbreviations	xiv-xvi
Acknowledgement	xvii
Abstract	xviii-xix
CHAPTER ONE: INTRODUCTION	1-1
1.1 Introduction of Land-use and Land-use Planning	1-3
1.2 Significance of Research	4-4
1.3 Research Problem	4-5
1.4 Research Questions	5-6
1.5 Objectives of the Research	6-6
1.5.1 General Objective	6-6
1.5.2 Specific Objectives	6-6
1.6 Organization of the Thesis	6-7
1.7 Limitation of the Study	7-8
CHAPTER TWO: LITERATURE REVIEW	9-9
2.1 Introduction	9-9
2.2 Definition of Land-use	9-12
2.3 Concepts of Sustainable Land-use	12-14
2.4 Land-use Changes	15-15
2.5 Sustainable Land-use Planning	16-26
2.6 GIS Application in Sustainable Land-use Planning	26-28

2.6.1 Multi-criteria Decision Making Analysis	29-30
2.6.2 Spatial Planning and Decision Making	30-32
2.6.3 Integrating GIS and MCDM Techniques	32-34
2.7 Relevance of the Literature to the Research	34-36
2.8 Originality of the Study	36-37
CHAPTER THREE: METHODOLOGY	38-38
3.1 Research Design	38-40
3.2 Study Area	40-41
3.3 Evaluation of <i>Batticaloa</i> District	41-43
3.3.1 The History of Human Settelments in Batticaloa District	43-44
3.3.2 Urban Hierarchy of Batticaloa Municipal Council	44-46
3.3.3 Setting of Administrative Boundary of Batticaloa Municipal Coun	cil 46-47
3.4 Physical Environment Demographic Information	47-49
3.4.1 Topography	49-50
3.4.2 Relief	50-51
3.4.3 Soil Condition	51-53
3.4.4 Hydrological System	53-54
3.4.5 Vegetation Pattern and Urban Greenery	54-55
3.4.6 Environmentally Sensitive Areas	55-57
3.4.7 Climate	57-57
3.4.7.1 Rainfall	58-59
3.4.7.2 Temperature	59-60
3.4.7.3 Agro-Ecological Zones	60-62
3.4.8 Population	62-64

3.5 Sampling Procedure	65-67
3.6 Data Collection	67-70
3.7 Methods of Data Analysis	70-70
3.7.1 Image Classification Analysis	70-71
3.7.1.1 Supervised Classification	71-72
3.7.1.2 Predition of Land-use	73-75
3.7.2 Pinpointing Improper Land Use Practices	75-75
3.7.3 Sustainable Land-use Planning	76-76
3.7.3.1 Population Projection and Urban Growth Model	76-77
3.7.3.2 Land Suitability Analysis	77-81
CHAPTER FOUR: RESULTS AND DISCUSSION	82-82
4.1 Contemporary Land-use Patterns in Batticaloa Municipal Council	82-86
4.1.1 Temporal Land-use Change from 1980 to 2020 in Batticaloa	
Municipal Council	86-87
4.1.1.1 Land-use Changes from 1980 - 1990	88-93
4.1.1.2 Land-use Changes from 1990 - 2000	93-97
4.1.1.3 Land-use Changes from 2000 - 2010	97-101
4.1.1.4 Land-use Changes from 2010 - 2020	101-105
4.1.1.5 Overall Changes in Land-use between 1980 - 2020	105-111
4.1.2 Prediction of Land-use Model	111-115
4.2 Currently Practiced Improper Land-use in the Study Area	116-116
4.2.1 Low Productivity Agricultural Lands	117-122

4.2.2 Utilizing Ecological Land-use for Other Purposes	123-125		
4.3 Environmental Issues Created by the Improper Land-use Prac	ctices 125-125		
4.3.1 Analysis on Environmental Impact and Expectation of			
Sustainability	125-128		
4.3.2 Inferential Analysis Criteria on Environmental Impact	128-143		
4.3.3 Inferential Analysis Criteria on Expectation of Sustainab	oility 144-161		
CHAPTER FIVE: GIS-BASED SUSTAINABLE LAND USE PL	ANNING162-162		
5.1 Land Suitability Analysis for Sustainable Land-use Planning	162-164		
5.1.1 The Topographical Nature	164-174		
5.2.2 The Socio-economic Factors	174-183		
5.2.3 The Biophysical Factors	184-192		
5.2.4 The Prohibition Factors	193-202		
5.2.4 Suitability of Factors of Land-use Planning	202-205		
CHAPTER SIX: CONCLUSIONS AND RECOMMENDATION	S 205-205		
6.1 Conclusions	205-208		
6.2 Recommendations	208-209		
List of References	List of References		

Appendices

List of Tables

3.1	Population Growth Rate in Batticaloa Municipal Council	63
3.2	A Sample Size of the Study Area	65-67
3.3	Fundamental Scale used Pairwise Comparison	80
4.1	Land-use Types in Batticaloa Municipal Council	83
4.2	Land-use in Batticaloa Municipal Council in 2020	84
4.3	Land-use Types in Batticaloa Municipal Council from 1980 - 2020	86
4.4	Change of Land-use Classes from 1980 - 1990	92
4.5	Summary of Changes in Land-use Types from 1990 - 2000	95
4.6	Summary of Changes in Land-use Classes from 2000 - 2010	100
4.7	Summary of Changes in Land-use Classes from 2010 - 2020	104
4.8	Summary of Changes in Land-use Classes from 1980 - 2020	110
4.9	Probability Transition Matrix of Land-use Classes in 1980 and 2020	112
4.10	Present and Projected Land-use in Batticaloa Municipal Council	115
4.11	Low Productive Agriculture Land	118
4.12	Frequency Distribution of Gender of Environmental Impacts and	
	Expectation of Sustainability	126
4.13	Frequency Distribution of Age groups of Environmental Impacts and	
	Expectation of Sustainability	126
4.14	Frequency Distribution of Occupation of Environmental Impacts and	
	Expectation of Sustainability	127
4.15	Frequency Distribution of Nature of Jobs of Environmental Impact and	
	Expectation of Sustainability	127

4.16	Frequency Distribution of Work Experience in Years of Environmental	
	Impact and Expectation of Sustainability	128
4.17	t-Test for Specified Value (Average = 3) of Statements on Urban Expanse	129
4.18	t-Test for Specified Value (Average = 3) of Statements on Urban Greenery	130
4.19	t-Test for Specified Value (Average = 3) of Statements on	
	Waste Management	131
4.20	t-Test for Specified Value (Average = 3) of Statements on Wetland Filling	133
4.21	t-Test for Specified Value (Average = 3) of Statements on Water Pollution	133
4.22	t-Test for Significant Difference between Male and Female	135
4.23	Chi-square Test for Goodness of Fit of Equality of Level of	
	Environmental Impact	136
4.24	Chi-square Test for Association between Gender and Level of	
	Environmental Impact	136
4.25	ANOVA for Significant Difference among Age Group to Criteria of	
	Environmental Impact of Government Officials and Urban Dwellers	137
4.26	ANOVA for Significant difference among Occupation of	
	Environmental Impact	139
4.27	Mann Whitney U test for significant difference between Mean Rank of	
	Nature of Job with respect to Environmental Impact	141
4.28	Kruskal-Wallis test for significant difference among Mean Rank of	
	Working Experience in years	142
4.29	Karl Pearson Correlation Coefficient between Sub-criteria of the	
	Environmental Impact	143

4.30	t-Test for Specified Value (Average = 3) of Statements on Environmental	
	Condition	144
4.31	t-Test for Specified Value (Average = 3) of Statements on Planning and	
	Implementation toward Batticaloa Municipal Council	146
4.32	t-Test for Specified Value (Average = 3) of Statements on Organizational	
	Commitments	148
4.33	t-Test for Specified Value (Average = 3) of Statements on Living	
	Satisfaction	149
4.34	t-Test for Specified Value (Average = 3) of Statements on Sustainable	
	Development	150
4.35	t-Test for Significant Difference between Male and Female	151
4.36	Chi-square Test for Goodness of Fit of Equality of Level of Expectation of	
	Sustainability	152
4.37	Chi-square Test for Association between Gender and Level of Expectation of	of
	Sustainability	153
4.38	ANOVA for Significant Difference among Age Groups to Sub-criteria of	
	Expectation of Sustainability	154
4.39	ANOVA for Significant difference among Occupation of Expectation of	
	Sustainability	156
4.40	Mann Whitney U-test for significant difference between Mean Rank of	
	Nature of Job with respect to sub-criteria of Expectation of Sustainability	158
4.41	Kruskal-Wallis test for significant difference among Working Experience	
	in years to sub-criteria of Expectation of Sustainability	159

4.42	2 Karl Pearson Correlation Coefficient between Sub-criteria of expectation of	
	sustainability	161
5.1	Slope Class	165
5.2	Slope Suitability Class	165
5.3	Exposer of Natural Hazards	169
5.4	Suitability of Exposer of Natural Hazards	170
5.5	Soil Types	171
5.6	Factors' Weight of Topographical Nature	173
5.7	Suitability of Topographical Nature	173
5.8	Suitability of Land-use Types	177
5.9	Levels of Income and Suitability	177
5.10	Proximity of Cultural Heritage Places	181
5.11	Factors' Weight of Socio-economic	182
5.12	Suitability of Socio-economic Factors	183
5.13	Urban greenery/ Vegetation's Suitability	186
5.14	Suitability of Proximity of Water Conservation	186
5.15	Suitability of Important of Wetland	191
5.16	Factors' Weight of Biophysical	191
5.17	Suitability of Biophysical Factors	192
5.18	Suitability of Proximity of Surface Waters	194
5.19	Suitability of Special Protected Areas	198
5.20	Suitability of Coastal Buffer Zone	200
5.21	Factor's' Weight of Prohibition	200
5.22	Suitability of Prohibition Factors	202

5.23	Factors' Weight of Land-use Planning	202
5.24	Suitability of Sustainable Land-use Planning	204

List of Figures

3.1	Conceptual Framework of the Study	39
3.2	Location of Study Area	41
3.3	The Topographical Cross-section of Sri Lanka	50
3.4	Relief Map of Study Area	51
3.5	Soil Map of Batticaloa Municipal Council	52
3.6	Water Resources of Batticaloa Municipal Council	54
3.7	Environmentally Sensitive Areas in Batticaloa Municipal Council	56
3.8	Average Rainfall	58
3.9	Monthly Average Temperature	60
3.10	Agroecological Zone in the Study Area	61
3.11	Population Density by GND in 2018	64
4.1	Land-use in Batticaloa Municipal Council in 2020	85
4.2	Temporal of Land-use in Batticaloa Municipal Council from 1980 - 2020	87
4.3	Land-use in Batticaloa Municipal Council in 1980	89
4.4	Land-use in Batticaloa Municipal Council in 1990	90
4.5	Gain and Loss of Land-use Classes from 1980 - 1990	91
4.6	Net Change from 1980 - 1990	92
4.7	Changes in Land-use Classes from 1980 - 1990	93
4.8	Land-use in Batticaloa Municipal Council in 2000	94
4.9	Gain and Loss of Land-use from 1990 - 2000	95
4.10	Net Change from 1990 - 2000	96
4.11	Changes of Land-use Classes from 1990 - 2000	97
4.12	Land-use in Batticaloa Municipal Council in 2010	98

4.13	Gain and Loss of Land-use Types from 2000 - 2010	99
4.14	Net Changes from 2000 - 2010	100
4.15	Change of Land-use Types from 2000 - 2010	101
4.16	Land-use in Batticaloa Municipal Council in 2020	102
4.17	Gain and Loss of Land-use from 2010 - 2020	103
4.18	Net Change of Land-use Class from 2010 - 2020	104
4.19	Changes among Land-use Classes from 2010 - 2020	105
4.20	Gain and Loss of Land-use from 1980 - 2020	109
4.21	Net Changes of Land-use Types from 1980 - 2020	110
4.22	Change of Land-use Types from 1980 - 2020	111
4.23	Prediction of Land-use for 2030 in BMC	112
4.24	Markovian Probabilities Conditions of Land Classes of Agriculture (i),	
	Bare Land (ii), Home garden (iii), Homestead (iv), Sandy (v), Scrub (vi)	3 11/
1 25	and Wetland (vii)	3-114
4.25	and Wetland (vii) 11 Present (2020) and Prediction (2030) of Land-use Classes	115
4.26	and Wetland (vii)11Present (2020) and Prediction (2030) of Land-use ClassesLow Productive Agricultural Land	115 117
4.26 4.27	and Wetland (vii)11Present (2020) and Prediction (2030) of Land-use ClassesLow Productive Agricultural LandLow Productivity Paddy Lands	115 117 118
4.26 4.27 4.28	and Wetland (vii)11Present (2020) and Prediction (2030) of Land-use ClassesLow Productive Agricultural LandLow Productivity Paddy LandsLow productive Field and Plantation Crops Areas	115 117 118 119
4.264.274.284.29	and Wetland (vii)11Present (2020) and Prediction (2030) of Land-use ClassesLow Productive Agricultural LandLow Productivity Paddy LandsLow productive Field and Plantation Crops AreasAbandoned Land of Low Productive Agriculture Area	 115 117 118 119 121
 4.26 4.27 4.28 4.29 4.30 	and Wetland (vii)11Present (2020) and Prediction (2030) of Land-use ClassesLow Productive Agricultural LandLow Productivity Paddy LandsLow productive Field and Plantation Crops AreasAbandoned Land of Low Productive Agriculture AreaImproper Land-use Practices in Wetland	 115 117 118 119 121 124
 4.26 4.27 4.28 4.29 4.30 5.1 	and Wetland (vii)11Present (2020) and Prediction (2030) of Land-use ClassesLow Productive Agricultural LandLow Productivity Paddy LandsLow productive Field and Plantation Crops AreasAbandoned Land of Low Productive Agriculture AreaImproper Land-use Practices in WetlandSlope map in Percentage	 115 117 118 119 121 124 166
 4.26 4.27 4.28 4.29 4.30 	and Wetland (vii)11Present (2020) and Prediction (2030) of Land-use ClassesLow Productive Agricultural LandLow Productivity Paddy LandsLow productive Field and Plantation Crops AreasAbandoned Land of Low Productive Agriculture AreaImproper Land-use Practices in Wetland	 115 117 118 119 121 124
 4.26 4.27 4.28 4.29 4.30 5.1 	and Wetland (vii)11Present (2020) and Prediction (2030) of Land-use ClassesLow Productive Agricultural LandLow Productivity Paddy LandsLow productive Field and Plantation Crops AreasAbandoned Land of Low Productive Agriculture AreaImproper Land-use Practices in WetlandSlope map in Percentage	 115 117 118 119 121 124 166
 4.26 4.27 4.28 4.29 4.30 5.1 5.2 	and Wetland (vii)11Present (2020) and Prediction (2030) of Land-use ClassesLow Productive Agricultural LandLow Productivity Paddy LandsLow productive Field and Plantation Crops AreasAbandoned Land of Low Productive Agriculture AreaImproper Land-use Practices in WetlandSlope map in PercentageSuitability of Slope Gradient	 115 117 118 119 121 124 166 167

5.6	Suitability of Soil Types	172
5.7	Suitability of Topographical Nature	174
5.8	Land-use Classes	175
5.9	Suitability of Land-use Types	176
5.10	Levels of Income	178
5.11	Suitability of Income Levels	179
5.12	Proximity of Cultural Places	180
5.13	Suitability of Proximity of Cultural Places	181
5.14	Suitability of Socioeconomic Factors	183
5.15	Types of Urban Greenery/ Vegetation	184
5.16	Suitability of Urban Greenery/ Vegetation	185
5.17	Proximity of Water Conservation	187
5.18	Suitability of Water Conservation	188
5.19	Proximity of Wetland	189
5.20	Suitability of Wetland	190
5.21	Suitability of Biophysical Factors	192
5.22	Proximity of Surface Water	193
5.23	Suitability of Surface Water	195
5.24	Proximity of Special Protected Areas	196
5.25	Suitability of Special Protected Areas	197
5.26	Proximity of Costal Buffer Zone	198
5.27	Suitability of Coastal Buffer Zone	199
5.28	Suitability of prohibition Factors	201
5.29	Model Builder of Sustainable Land-use Planning	203

5.30	Weighted Overlay of Sustainable Land-use Planning	204
5.31	Suitability of Sustainable Land Use Planning	205

Abbreviations

AHP	-	Analytic Hierarchy Process
ANOVA	-	Analysis of Variance
AOI	-	Area of Interest
CBD	-	Central Business District
CHIS	-	Critical Habitat Information System
DEM	-	Digital Elevation Model
DL	-	Dry Land
DMRT	-	Duncan Multiple Range Test
DSS	-	Decision Support System
DWT	-	Discrete Wavelet Transform
EC	-	Environmental Condition
ERDAS	-	Earth Resources Data Analysis System
ETM	-	Enhance Thematic Mapper
FAO	-	Food and Agriculture Organization
GAL	-	Gain and Loss
GIS	-	Geographic Information Systems
GND	-	Grama Niladharies Division
GPS	-	Global Position System
IDB	-	Inter-American Development Bank
kg/ac	-	Kilogram/Acre
LCM	-	Land Change Modeler
LS	-	Living Satisfaction
MC	-	Markov Chain

MCA	-	Multiple Criteria Analysis
MCDM	-	Multi-criteria Decision Making
MCSDSS	-	Multi-criteria Spatial Decision Support Systems
MLC	-	Maximum likelihood classifier
mm	-	Millimeter
MNDSD	-	Manmunai North Divisional Secretariat Division
MSL	-	Mean Sea Level
MSS	-	Multi-Spectral Scanner
OC	-	Organizational Commitments
OLI	-	Operational Land Imager
PI	-	Planning and Implementation
STD	-	Standard Deviation
SD	-	Sustainable Development
SDSS	-	Spatial Decision Support Systems
SPSS	-	Statistical Package for the Social Sciences
sq.km	-	Squire Kilometer
TIRS	-	Thermal Infrared Sensor
UC	-	Urban Council
UDA	-	Urban Development Authority
UE	-	Urban Expansion
UG	-	Urban Greenery
UNCED	-	United Nations Conference on Environment and Development
UNEP	-	United Nation Environment Programme
USGS	-	United State Geological Survey

WF	-	Wetland Filling
WLC	-	Weighted Linear Combination
WM	-	Waste Management
WP	-	Water Pollution
WWF	-	World Wildlife Fund

Acknowledgment

I would like to express my sincere gratitude to my supervisors Prof. T. M. S. P. K. Thennakoon, Prof. Ven. P. Sangasumana Thero and Ms. H. M. Jayani Rupi Herath helped and guided in making this research study a success.

I specially thank Prof. M. I. M. Kaleel, Department of Geography, South Eastern University of Sri Lanka for his timely and valuable suggestions throughout my research work.

I would also like to thank Mr. A. L. Iyoob, Development Officer and Land Use Policy Planning Department who gave his moral support throughout my research work.

I wish to thank my wife who encouraged and sacrificed her leisure time to help to carry out this study and my parents, other family members and relatives for their moral support and encouragement to complete this research study.

Finally, I wish to thank all who helped to carry out this research study successfully even though their names are not individually and severally mentioned.

GIS-based Sustainable Land-use Planning: A Case Study of Batticaloa Municipal

Council

Ibra Lebbe Mohamed Zahir

ABSTRACT

Land has been defined as the frequently available natural resource on which man can rely to build their lives. Land-use planning is a planning technique to establish in advance the quality of life on the earth. The decision-making process is focused on facilitating the biophysical, socio-economic, environmental and public considerations which provide numerous benefits for the public. The land is frequently utilized improperly due to the 1978 cyclone, the 2004 tsunami and the civil war over 30 years. As a result, the natural environment has faced various challenges. Therefore, different spatial and temporal scales need to be considered to asses sustainable land-use plans for the future generation in *Batticaloa* Municipal Council.

The study aims to develop a GIS-based sustainable land-use plan for minimizing environmental issues in *Batticaloa* Municipal Council. To achieve the aim, a mixed method approach was used to make meaning of the sound effects of a sustainable landuse plan. The Landsat satellite images were used for temporal land-use analysis by maximum likelihood classifier in the supervised classification method to evaluate the existing land-use and land change modeler was used for the prediction of land change over the 40 years, whereas, the improper land-use was determined by GPS pinpoints, photographs and field observations. Furthermore, the questionnaire survey was evaluated the environmental issues regarding to the improper land use practices by the hypothesis test from urban dwellers and government officials. The results revealed that the built-up land-use has remarkably extended by 34.1% while homegarden has minimal growth of 0.5%. But, agriculture, bare land, sandy and scrub have declined to 9.5%, 8.5%, 4.4% and 2.1% respectively. According to the loss and gain analysis, only built-up land-use has found that higher gain of 24.2% and wetland and homegaren least gain of 3.2% and 0.5% respectively while other land-use of agriculture, bare land, sandy and scrub loss of -9.7%, 8.2%, -6.7%, -3.5% respectively between 1980-2020. However, projected land-use from 2020-2030, built-up, homegarden and sandy would gain 3.2%, 1.9% and 0.1% respectively while loss of agriculture, wetland, scrub and bare land as -3.4%, -1.0%, -0.4% and -0.3% respectively. Furthermore, improper land-use of low productive agricultural land is identified at 23.7% and wetland at 2.6%. According to the suitability levels, 88.2% of land can recommend as suitable for sustainable land-use plans in future urban developments while 11.8% is recommended for conservation to urban ecological management in *Batticaloa* Municipal Council.

Keywords: land-use, sustainable, maximum likelihood, environment, supervised classification