

PROCEEDINGS

Peradeniya University International Research Sessions 2021

Volume 23

11 and 12 November 2021

UNIVERSITY OF PERADENIYA

SRI LANKA

"Research and Innovation for an Inclusive Society"

PROCEEDINGS

PERADENIYA UNIVERSITY INTERNATIONAL RESEARCH SESSIONS (*i*PURSE) 2021

Volume 23

11th & 12th November 2021

Hosted by

Faculty of Arts University of Peradeniya Sri Lanka *iPURSE 2021 – 506*

Science, Technology and Industry

Microwave-Assisted Solvent-Free Synthesis of 3-(4-Dimethylaminobenzylidene) Indolin-2-One and Investigation of Its Anti-Oxidant Activity

H.P.S.K. Wijekoon¹, N.P.L.N. Palliyaguru¹, T.D.C.P. Gunasekara^{2,3}, S.S.N. Fernando², P.P.M. Jayaweera¹ and K.G.U.R. Kumarasinghe^{1*}

¹Department of Chemistry, Faculty of Applied Sciences ²Department of Microbiology, Faculty of Medical Sciences ³Center for Plant Materials and Herbal Products Research University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka *upulk@sjp.ac.lk

The recent emergence of 3-benzylidene-indoline-2-ones as an important group of oxindole derivatives is gaining much interest in the pharmaceutical field. These oxindole derivatives have been shown a broad spectrum of biological activities including anti-cancer, anti-viral, antibacterial, anti-oxidant and anti-inflammatory. The development of an effective method for the synthesis of these compounds in an environmentally benign manner will be a tremendous benefit to the society. Microwave-assisted organic reactions in solvent-free conditions are considered an effective, eco-friendly synthetic tool in organic chemistry as it acts fast and produces high yield and low by-products. The present study is focused on the development of a novel green method for the synthesis of 3-(4-dimethylaminobenzylidene) indoline-2-one and to investigate its antioxidant activity. Oxindole and 4-(dimethylamino)benzaldehyde was thoroughly mixed with 3aminopropyl)triethoxysilane (APTES) modified silica and irradiated inside a modified microwave oven for 12 minutes. The product was obtained with 76% yield and characterized by Nuclear Magnetic Resonance (NMR) and Fourier-Transform Infrared (FTIR) spectroscopic techniques. The compound was tested for in-vitro anti-oxidant activity using 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay. Both ¹H NMR and ¹³C NMR spectra confirmed the formation of 3-(4-dimethylaminobenzylidene) indoline-2-one. The FTIR spectrum of the resulted compound show characteristics peaks related to the functional groups present in the targeted compound. The half-maximum inhibitory concentration (IC-50) of resulted product and the standard drug (ascorbic acid) was calculated using linear regression analysis. IC-50 values of the synthesized compound and the positive control, ascorbic acid were 0.028 ± 0.008 mg/mL 0.029 \pm 0.004 mg/mL, respectively. These findings revealed that 3-(4and dimethylaminobenzylidene) indoline-2-one shows a strong anti-oxidant activity. Microwaveassisted, eco-friendly, solvent-free, green synthesized biologically active oxindole derivative (3-(4-dimethylaminobenzylidene) indoline-2-one) will be applicable for the future development of novel therapeutic agents.

Keywords: Microwave-assisted, Solvent-free, Oxindole, 3-benzylidene-indolin-2-ones, Anti-oxidant

Financial assistance by Research Grant (ASP/01/RE/SCI/2017/81) is acknowledged.