Association between acute

organophosphate and carbamate

self - poisoning and development of

hyperglycaemia

By

Thotamuna Kankanamge Ravithima Roshali Senarathne

M.Phil.

2022

Association between acute organophosphate and carbamate

self - poisoning and development of hyperglycaemia

By

Thotamuna Kankanamge Ravithima Roshali Senarathne

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of Master of Philosophy

DECLARATION BY THE CANDIDATE

The work described in this thesis was carried out by me under the supervision of Prof. U. Hettiaratchi, Prof. L. Athiththan, Prof. H, Peiris (Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura) and Prof. S. Siribaddana (Department of Medicine Faculty of Medicine & Allied Sciences, Rajarata University of Sri Lanka) and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree/Diploma.

.....

.....

Date

Signature of the candidate

CERTIFICATION BY SUPERVISORS

We certify that the candidate has incorporated all corrections, additions and amendments recommended by the examiners to this version of the M.Phil. thesis.

Prof. U. Hettiaratchi Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura.

•••••

Prof. S. Siribaddana Department of Medicine, Faculty of Medicine & Allied Sciences, Rajarata University of Sri Lanka.

Prof. L. AthiththanDepartment of Biochemistry,Faculty of Medical Sciences,University of Sri Jayewardenepura.

.....

Prof. H. Peiris Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura.

TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURES
LIST OF ABBREVIATIONS
ACKNOWLEDGEMENT
ABSTRACT1
1. Introduction
1.1 General Introduction1
1.2 Justification
1.3 Objectives:
1.3.1 General Objective7
1.3.2 Specific Objectives7
2. Literature review
2.1 Chemical structure
2.1.1 Organophosphate
2.1.2 Carbamates
2.2 Mechanism of toxicity 10
2.2.1. Mechanism of toxicity due to organophosphate poisoning
2.2.2 Mechanism of toxicity due to carbamate poisoning
2.3 Suicide

2.3.1 Common methods of committing suicide12
2.3.2 Suicide prevalence in worldwide, South Asia and Sri Lankan
2.4 Acute pesticide poisoning
2.4.1 Global and in Sri Lankan status of acute pesticide poisoning
2.4.2 Acute organophosphate poisoning worldwide16
2.4.3 Acute organophosphate poisoning in Sri Lanka16
2.4.4 Prevalence of organophosphate and carbamate poisoning in Sri Lanka 18
2.5 Assessment of severity in poisoning
2.5.1 Peradeniya organophosphate poisoning scale
2.5.2 Red blood cell cholinesterase and butylcholinesterase
2.6 Clinical symptoms of organophosphate and carbamate poisoning 22
2.7 Effects of organophosphate and carbamate poisoning in human
2.8 Diagnosis & management of organophosphate and carbamate poisoning
2.9 Organophosphate poisoning and hyperglycaemia
2.9.1 Human studies on acute organophosphate/carbamate poisoning and
hyperglycaemia
2.9.2 Animal studies on acute organophosphate and carbamate poisoning and
hyperglycaemia
2.9.3 Chronic exposure to organophosphate and carbamate poisoning and
development of diabetes

2.10 Organophosphate and carbamate poisoning and development of
hypoglycaemia
2.11 Epidemiology of diabetes mellitus
2.12 Underline mechanisms of hyperglycaemia following organophosphate and
carbamate poisoning
2.12.1 Acute pancreatitis induced by acute organophosphate and carbamate
poisoning
2.12.2 Gluconeogenesis and glycogenolysis as a mechanism for hyperglycaemia 34
2.12.3 Physiological stress
2.12.4 Role of oxidative stress in hyperglycaemia following exposure to
organophosphate and carbamate
2.12.5 Insulin resistance as a mechanism of hyperglycaemia in organophosphate and
carbamate poisoning
2.13 Organophosphate and carbamate poisoning and liver markers
2.13.1 Impairments of glucose metabolism in liver following anticholinesterase
poisoning
2.13.2 Selected liver markers in organophosphate and carbamate poisoning41
3. Materials and Methods
3.1 Materials
3.1.1. Water
3.1.2 Assay kits
3.1.3 Equipment

3.1.4 Consumables	5
3.2 Methods	6
3.2.1 Study sample	6
3.2.2 Study design	6
3.2.3 Calculation of sample size	6
3.2.4 Inclusion criteria	6
3.2.5 Exclusion criteria	6
3.2.6. Study setting	6
3.2.7. Collection of blood samples	7
3.2.8 Assessments of severity of poisoning on admission	9
3.2.9 Biochemical analysis on admission5	1
3.2.10 Parameters assessed at the time of discharge	6
3.2.11 Statistical analysis	5
3.2.12 Ethical consideration	5
4. Results	6
4.1 Description of the current study population	6
4.1.2 Characteristics of poisoning and the clinical symptoms of acut	e
organophosphate and carbamate poisoning6	6
4.1.3 Treatment outcomes and frequencies	9
4.2 Biochemical analysis– on admission	9

4.2.1 Comparison of biochemical parameters between organophosphate & carbamate
self- poisoned patients and among the Peradeniya organophosphate poisoning scale
severity groups
4.2.2 Patients with elevated biochemical parameters beyond the cut off value on
admission72
4.2.3 Correlations between severity of poisoning and biochemical parameters
assessed on admission75
4.3 Biochemical analysis at discharge77
4.3.1 Comparison of median biochemical parameters at discharge between
organophosphate and carbamate poisoned patients and Peradeniya organophosphate
poisoning scale groups77
4.3.2 Percentages of subjects with elevated biochemical parameters beyond the cut
off value at discharge
4.3.3 Correlations between severity of poisoning and biochemical parameters,
clinical characteristics assessed at discharge
4.4 Biochemical analysis at follow-up after six months of acute poisoning
4.4.1 Median values of HbA1c, liver markers and random blood sugar at follow-up
4.4.2 Correlations between severity of poisoning on admission and biochemical
parameters assessed on follow-up study
4.4.3 Comparison between biochemical parameters assessed on admission and
follow-up

4.5. Biochemical analysis of hyperglycaemic and normoglycaemic patients on
admission
4.5.1 Comparison of biochemical parameters assessed on admission and discharge
between on admission hyperglycaemic and normoglycaemic subjects
4.6 Association between severity of poisoning (red blood cell cholinesterase level) and
random blood sugar on admission after controlling of confounding factors
4.7 Association between red blood cell cholinesterase levels and fasting blood sugar at
discharge after controlling of confounding factors
5. Discussion
5.1 Sociodemographic data
5.2 Characteristics features/ clinical symptoms of organophosphate and carbamate
poisoning
5.3 Acute organophosphate and carbamate poisoning and hyperglycaemia on
admission
5.4 Severity of acute organophosphate and carbamate poisoning on admission95
5.5 Selected liver markers in assessing severity of poisoning in organophosphate and
carbamate acute exposure96
5.6 Possible mechanism for hyperglycaemia following acute organophophate and
carbamate poisoning
5.6.1 Insulin resistance
5.6.2 Pancreatic damage
5.6.3 Gluconeogenesis

5.6.4 Oxidative stress	102
5.6.5 Stress induced hyperglycaemia	103
5.7 Follow-up study and hyperglycaemia in 6 months	104
5.8 Outcome of the study	105
6. Conclusions	106
7. Recommendation and Limitations	108
References	
Appendices	

LIST OF TABLES

Table 2.1 Peradeniya Organophosphate Poisoning Scale 19
Table 3.1 : Equipment used in the study
Table 3.2: Peradeniya organophosphate poisoning scale
Table 3.3: Peradeniya organophosphate poisoning scale
Table 4.1: Socio demographic data of the study subjects
Table 4.2: Characteristic features observed on admission for the subjects with acute
organophosphate and carbamate poisoning
Table 4.3: Comparison of biochemical parameters between organophosphate &
carbamate self- poisoned patients and among the Peradeniya organophosphate poisoning
severity groups71
Table 4.4: Comparison of median biochemical parameters assessed on admission among
Peradeniya organophosphate poisoning scale groups72
Table 4.5: Percentages of subjects with biochemical parameters beyond cut off values on
admission74
Table 4.6: Comparison of percentage of subjects with biochemical parameters beyond
cut off value on admission, between Peradeniya organophosphate poisoning scale
severity groups75
Table 4.7: Correlations between severity of poisoning and biochemical parameters, and
poisoning characteristics

Table 4.8: Median values of biochemical parameters at discharge among different
severity groups according to Peradeniya organophosphate poisoning scale79
Table 4.9: Comparison of median biochemical markers assessed at discharge between
groups of Peradeniya organophosphate poisoning scale
Table 4.10: Patients with biochemical parameters above the cut off values at discharge
among 3 severity groups of Peradeniya organophosphate poisoning scale
Table 4.11: Differences of the percentages of elevated biochemical markers assessed at
discharge between groups of Peradeniya Organophosphate Poisoning scale
Table 4.12: Correlations between severity of poisoning and biochemical parameters
assessed on discharge
Table 4.13: Median values of biochemical parameters of the patients at follow-up85
Table 4.13: Median values of biochemical parameters of the patients at follow-up85 Table 4.14: Correlations between severity of poisoning and biochemical parameters
Table 4.14: Correlations between severity of poisoning and biochemical parameters
Table 4.14: Correlations between severity of poisoning and biochemical parameters assessed on follow-up study
Table 4.14: Correlations between severity of poisoning and biochemical parameters assessed on follow-up study
Table 4.14: Correlations between severity of poisoning and biochemical parameters assessed on follow-up study
Table 4.14: Correlations between severity of poisoning and biochemical parameters assessed on follow-up study
Table 4.14: Correlations between severity of poisoning and biochemical parameters assessed on follow-up study

LIST OF FIGURES

Figure	2.1:	Acetylcholinest	terase inhibit	or com	plex			11
Figure	2.2:	Possible mech	anisms of i	nsulin r	esistance	induced by	organopho	sphate
pesticid	es							39
Figure	2.3:	The role of hyp	erglycaemia	in insul	in resistar	nce following	g organopho	sphate
exposur	те							40
Figure	4.1 :	Percentage of o	organophosp	hate and	l carbama	te poisons ir	ngested	68
Figure	4.2:	Percentages	of subjects	s with	clinical	symptoms	following	acute
organop	ohosp	hate and carbar	nate poisonir	ıg				69

LIST OF ABBREVIATIONS

ACh	Acetylcholine
AChE	Acetylcholinesterase
AGEs	Advanced Glycated End products
ALP	Alkaline Phosphatase
ALT	Alanine Aminotransferase
AST	Aspartate aminotransferase
ATP	Adenosine Triphosphate
BHT	Bed Head Ticket
CAT	Catalase
CNS	Central Nervous System
DM	Diabetes Mellitus
DMSO	Dimethyl Sulfoxide
DTNB	Dithionitrobenzoic acid
EDTA	Ethylenediaminetetraacetic acid
ELISA	Enzyme-Linked Immunosorbent Assay
ERC	Ethics Review Committee
ETU	Emergency Treatment Unit
FBS	Fasting Blood Sugar
FMS	Faculty of Medical Sciences
GC	Glucagon
GP	Glycogen Phosphorylase
HbA1C	Glycated Haemoglobin
HOMA-IR	Homeostasis Model Assessment-estimated Insulin Resistance
HPA	Hypothalamic-Pituitary-Adrenal axis
ICU	Intensive Care Unit
IGR	Insulin to Glucagon Ratio
IQR	Inter Quartile Range
IR	Insulin resistance

LDH	Lactate dehydrogenase
MDA	Malondialdehyde
NADP	Nicotinamide Adenine Dinucleotide Phosphate
OGTT	Oral Glucose Tolerance Test
OP	Organophosphates
PChE	Plasma cholinesterase
PEPCK	Phosphoenol Pyruvate Carboxy Kinase
POP	Peradeniya Organophosphate Poisoning Scale
RBC	Red Blood Cell
RBS	Random Blood Sugar
ROS	Reactive oxygen species
RUSL	Rajarata University of Sri Lanka
SOD	Super Oxide Dismutase
SPSS	Statistical Package for Social Sciences
T2DM	Type 2 Diabetes Mellitus
THA	Teaching Hospital Anuradhapura
USJ	University of Sri Jayewardenepura
WHO	World Health Organization

ACKNOWLEDGEMENT

First of all, I would like to express my deep and sincere gratitude to my principal supervisor, Prof. U. Hettiaratchi for giving me the opportunity to carry out M.Phil. under her supervision. Her constructive comments, enormous encouragement, valuable guidance, and advice have provided the foundation for this thesis and throughout the research. I am grateful and express my warm and sincere thanks to my co supervisors, Prof. S. Siribaddana, Prof. L Athiththan and Prof. H. Peiris for their patience, guidance, and support from the initial to the final stages of the study. I would like to thank them for the continual encouragement, valuable suggestions, and constructive ideas throughout the research. My deep appreciation is expressed to them for the mentorship and for the valuable time they spent especially in thesis writing. My deep appreciation is also expressed to Prof. S. Siribaddana, and all the other consultants in medical wards at Teaching Hospital, Anuradhapura (THA) for the clinical guidance and continuous support extended during patient recruitment and sample collection at (THA). My sincere gratitude to medical and nursing staff at emergency treatment unit, THA for helping me for the initial sample and data collection from the patients amidst their treatments towards the patients.

I would also like to give my warmest thanks for SACTRAC, University of Peradeniya for providing me Test-mate ChE photometric portable analyzer for about two years of period without any hesitation for the analysis of RBC cholinesterase.

Moreover, all the patients enrolled in this study are acknowledged for their consent and participation in this study. I would like to acknowledge all the academic and nonacademic staff members of the Department of Biochemistry, University of Sri Jayewardenepura for

xiii

the support provided during my M.Phil. I would be very thankful to Dr. Rahal and Dr. Asanga Sampath for their support given for the analysis done by ELISA technique.

I would be very grateful to Dr. Anusha Kanesh, Dr. Gayathri Ratnayake, Ms. Yashoda Weeresinghe and Ms. Sumedha Kalpani for the great support given throughout the research. I would like to thank my research colleagues, working attached to the Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura for their continuous support throughout the period. This study was funded by research grants (ASP/01/RE/MED/2017/63) of University of Sri Jayewardenepura, and I am very thankful for the financial support.

Finally, warm, and loving thanks to my dear family and friends for the inspiration, immense support, and sacrifices throughout the study. Most importantly, my heartfelt gratitude to my mother and father who stood by me in all the difficult situations which I have come across during this period. Many thanks to my husband Sanuja Rathnasekara for all the sacrifices and endless support given throughout this time period. At last, but not least a very special thanks goes to my loving daughter Yuhee Kenaya for being so supporting specially during the thesis writing.

This M.Phil. thesis would not have been possible without the love and support of the people mentioned above.

xiv

Association between acute organophosphate and carbamate self - poisoning and development of hyperglycaemia

Thotamuna Kankanamge Ravithima Roshali Senarathne

ABSTRACT

Intentional ingestion of pesticides has become a major health issue globally. Among the various types of pesticides, organophosphates (OPs) and carbamates, are commonly used for self-harm in the developing countries. In addition to adverse clinical outcomes of increased cholinergic manifestations, biochemical changes like hyperglycaemia have also been observed in acute exposure to OP and carbamate. Thus, the current study was designed to assess the glycaemic status and selected biochemical markers in acute OP and carbamate self-poisoned patients admitted to Teaching hospital Anuradhapura, (THA) with a follow-up study after 6 months of acute poisoning. This prospective longitudinal study was carried out in 157 patients. Severity of poisoning on admission was assessed using two methods; Peradeniya organophosphate poisoning (POP) scale and red blood cell (RBC) cholinesterase level. Venous blood sample was obtained to assess liver markers, RBC cholinesterase, and random blood sugar (RBS), on admission. On admission HbA1c was carried out to exclude the subjects with diabetes mellitus. Second blood sample was collected at the date of discharge after 8-10 hours of overnight fasting. Insulin, C-peptide, pancreatic amylase, phosphoenol pyruvate carboxy kinase (PEPCK), glucagon, liver markers, fasting blood sugar (FBS), Oral glucose tolerance test (OGTT), and homeostasis model assessment of insulin resistance (HOMA-IR) were assessed. Blood samples for the follow up study was taken after 6 months of poisoning and RBS, HbA1c, and liver markers were analyzed. Data were analyzed using SPSS version 21. Among the OP (62) and carbamate (95) self-ingested patients only 51 patients attended the follow-up study. Mean age $(\pm SD)$ of the total population, female and male groups were 33 (\pm 13), 28 (\pm 10) and 36 (\pm 13) years respectively. On admission 41.4% of the total study subjects were hyperglycaemic. The following parameters; RBS, AST and ALT on admission and ALT, AST, FBS, OGTT-I hour, OGTT 2-hour, insulin, C-peptide, glucagon and HOMA- IR at discharge, had a significant correlation with severity of poisoning. At discharge the biochemical parameters assessed, for median FBS, OGTT-1hour, OGTT-2-hour, insulin, C-peptide, glucagon, HOMA-IR, serum pancreatic amylase and AST showed significant differences (P<0.01) between POP mild and moderate poisoned groups. PEPCK was elevated in all three groups than the normal reference value. RBS and AST have significantly decreased in follow up study compared to the values on admission and discharge, whereas HbA1c did not show significant elevation in follow-up study. The findings of the present study indicate transient hyperglycaemia following acute OP and carbamate poisoning during the hospital stay which was normalized at the time of follow-up. Furthermore, FBS and HOMA-IR increased across the POP severity groups (mild to severe), and PEPCK was elevated above the cut off value in all three groups. Even though median pancreatic amylase values increased with the POP severity groups, the values were not elevated above the cut off value. Therefore, this transient change in glucose homeostasis might be attributed to the physiological stress, while excluding the pancreatic damage as an underlying mechanism of hyperglycaemia, which has been postulated in several studies. Further, larger sample size for follow-up study with severe poisoning patients would validate the findings.

Key words: Organophosphate, Carbamate, Peradeniya organophosphate poisoning scale, Hyperglycaemia, RBC cholinesterase