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SYNTHESIS AND CHARACTERIZATION OF CERAMIC 

COMPOSITES DERIVED FROM EPPAWALA APATITE FOR 

AUTOMOTIVE AND INDUSTRIAL APPLICATIONS 

Hapuhinne Korale Gedara Kalinga Damsisi Kumari Hapuhinna 

 

ABSTRACT 

 
The Sri Lankan Eppawala rock phosphate deposit, found in the North Central province, 

is a non-renewable natural resource that does not replenish over humanly meaningful time 

scales. It contains nearly 34% to 40% phosphorous pentoxide (P2O5). Even though there 

are numerous viable and value-added phosphorous (P) industries, Sri Lanka exports rock 

phosphate as a raw material at lower prices to other developed nations. Considering its 

resource-related wealth, it is a timely requirement to obtain the proper compensation for 

this non-renewable resource. Therefore, it is crucial to consider developing and 

commercializing fresh P-related finds from the Eppawala rock phosphate deposit. In order 

to value add Eppawala high-grade rock phosphate (HERP), this dissertation thoroughly 

and critically discusses three patented innovative processes (sol-gel alcoholic route, sol- 

gel acidified route, and solid-state sintering technique) for synthesizing three patented 

nano-hydroxyapatite (HAp) ceramic varieties. It provides significant insights into 

process composites incorporating those synthesized HAp ceramic varieties with different 

polymers [methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (HEMA)], 

polyester, epoxy, glass fibers, silicon carbide (SiC) and boron nitride (BN) which can be 

used for several biomedical, automotive and industrial applications. Synthesized nano-

HAp ceramic varieties and processed HAp incorporated composites were characterized 

using X-ray fluorescence spectroscopy (XRF), particle size analysis (PSA), X-ray 

diffraction spectroscopy (XRD), fourier-transform infrared spectroscopy (FTIR), 

scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM with 
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EDS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), 

dynamic mechanical analysis (DMA), tensile tests, and impact tests in order to find out 

composition, the size distribution of particles, crystallographic structure, identification of 

functional groups, the morphology of micro/nanostructures, glass transition temperatures, 

thermal stability, thermomechanical properties, tensile properties, and impact strength. 

American society for testing and materials (ASTM) standards were applied for all 

mechanical analyses. This dissertation compared those results with human hard tissues, 

commercial products, and literature according to their nature of applications. It has been 

concluded that HAp can be synthesized using the three routes to add value, HERP. These 

methods are highly cost-effective. Synthesized hexagonal, nano-HAp products perform 

similarly in chemical composition and structure to mammalian hard tissues via exhibiting 

different characteristics as bioceramic. The resulting composite materials obtained after 

reinforcing hydroxyapatite ceramic products with MMA and HEMA orderly for 

orthopedics and dentistry applications have proven that their performances are better than 

commercial products. It shows the highly profitable possibility of introducing Eppawala 

HAp products into the market as value-added bioceramic and its composites. Processed 

HAp incorporated E-glass fiber reinforced polyester matrix composites and ceramic 

(HAp/SiC/BN) incorporated epoxy matrix composites in this study demonstrate better 

properties than pure polyester and epoxy materials. Resulted composites can be used for 

automotive and aircraft applications. Also, it has confirmed the possibility of processing 

SiC and BN incorporated HAp composites under high temperatures (1600°C-1650°C), 

for other relevant industrial applications. 

Keywords: Eppawala high-grade rock phosphate; Hydroxyapatite; Hydroxyapatite 

composites; Biomedical applications; Automotive applications; Industrial applications 


