SYNTHESIS AND CHARACTERIZATION OF CERAMIC COMPOSITES DERIVED FROM EPPAWALA APATITE FOR AUTOMOTIVE AND INDUSTRIAL APPLICATIONS

By

Hapuhinne Korale Gedara Kalinga Damsisi Kumari

Hapuhinna

Ph.D.

2022

SYNTHESIS AND CHARACTERIZATION OF CERAMIC COMPOSITES DERIVED FROM EPPAWALA APATITE FOR AUTOMOTIVE AND INDUSTRIAL APPLICATIONS

By

Hapuhinne Korale Gedara Kalinga Damsisi Kumari

Hapuhinna

Thesis submitted to the University of Sri Jayewardenepura

for the award of the degree of Doctor of Philosophy

Declaration of the candidate

The work described in this thesis was carried out by me under the supervision of Dr. R. D. Gunaratne and Prof. H.M.J.C. Pitawala and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree / Diploma.

.....

Date

Signature of the Ph.D. candidate

Name of the candidate: Hapuhinne Korale Gedara Kalinga Damsisi Kumari Hapuhinna

Certification of the supervisors

"We certify that the candidate has incorporated all corrections, additions and amendments recommended by the examiners to this version of the Ph.D. thesis."

Supervisor:

Dr. R.D. Gunaratne Head Department of Materials and Mechanical Technology University of Sri Jayewardenepura, Sri Lanka

.....

Date

Signature

Co supervisor:

Prof. H.M.J.C. Pitawala Dean Faculty of Applied Sciences Uva Wellassa University, Sri Lanka

.....

Date

Signature

DEDICATION

To Dr. Rajitha Gunaratne, Prof. Jagath Pitawala

&

To my family

Appachchi, Amma, Isuru malli, Thanula malli

Without you all, this would still be a dream......

Thank you so much !!!

TABLE OF CONTENT

List of Tables	V
List of Figures	vii
Abbreviations	xiii
Acknowledgement	xvi
Abstract	xvii

1.0	INTRODUCTION	1
	1.1 Background of the Study	1
	1.2 Aims and Objectives of the Study	5
2.0	LITERATURE REVIEW	6
	2.1 Overview of Minerals and Rocks	6
	2.1.1 Minerals	6
	2.1.2 Rocks	6
	2.2 Overview of Rock Phosphate Deposits	7
	2.2.1 Worldwide Rock Phosphate Deposits	7
	2.2.2 Rock Phosphates	9
	2.2.3 Eppawala Rock Phosphate Deposit	11
	2.3 Overview of Apatite	14
	2.3.1 Introduction to Apatite	14
	2.3.2 Properties of Apatite	17
	2.3.3 Recent Advances and Applications of Apatite	17
	2.4 Overview of Biological Apatites	19
	2.4.1 Biomineralization of Hard Tissues	19
	2.4.2 Formation of Human Hard Tissues	20
	2.4.3 The Biomimetic Process	27
	2.5 Overview of Ceramics	30
	2.5.1 Introduction to Ceramics	30
	2.5.2 Properties of Ceramics	32
	2.5.3 Recent Advances and Applications of Ceramics	32

2.6 Overview of Bioceramics	38
2.6.1 Introduction to Biomaterials and Bioceramics	38
2.6.2 Properties of Bioceramics	40
2.6.3 Recent Advances and Applications of Bioceramics and	
Its Composites	43
2.7 Overview of Hydroxyapatite (HAp)	44
2.7.1 Introduction to Hydroxyapatite	44
2.7.2 Properties of Hydroxyapatite	45
2.7.3 Synthesizing Methods of Hydroxyapatite	45
2.7.4 Recent Advances and Applications of Hydroxyapatite	
and it's Composites	49
2.8 Overview of Silicon carbide (SiC)	53
2.8.1 Introduction to Silicon Carbide	53
2.8.2 Properties and Synthesizing Methods of Silicon carbide	55
2.8.3 Recent Advances and Applications of Silicon carbide and	
it's Composites	57
2.9 Overview of Boron nitride (BN)	60
2.9.1 Introduction to Boron nitride	60
2.9.2 Properties and Synthesizing Methods of Boron nitride	61
2.9.3 Recent Advances and Applications of Boron nitride and	
it's Composites	62
2.10 Overview of Polymers	64
2.10.1 Introduction to Polymers	64
2.10.2 Applications of Polymers	68
2.10.3 Methyl methacrylate (MMA)	72
2.10.4 2-hydroxyethyl methacrylate (HEMA)	74
2.11 Overview of Polyester Materials	78
2.11.1 Introduction of Polyesters	78
2.11.2 Properties of Polyesters	81
2.11.3 Recent Advances and Applications of Polyesters	82
2.12 Overview of Epoxy Materials	88
2.12.1 Introduction to Epoxy	89

	2.12.2 Properties of Epoxy	89
	2.12.3 Recent Advances and Applications of Epoxy	90
	2.13 Overview of Fibers	93
	2.13.1 Introduction to Fibers	93
	2.13.2 Introduction to Glass fibers	99
	2.13.3 Properties of Glass fibers	100
	2.13.4 Recent Advances and Applications of Glass fibers	101
	2.13.5 E-glass fibers	102
	2.14 Overview of Composites	104
	2.14.1 Introduction to Composites	104
	2.14.2 Ceramics Matrix Composites (CMC)	108
	2.14.3 Polymer Matrix Composites (PMC)	111
	2.14.4 Recent Advances and Applications of Composites	114
3.0	MATERIALS AND METHODOLOGY	121
	3.1 Materials	121
	3.1.1 Raw Materials and Chemicals Used for The Study	121
	3.1.2 Instruments Used for the Study	125
	3.2 Methods	129
	3.2.1 Processing Moisture Removed Eppawala High-Grade	
	Rock Phosphate (MRHERP)	129
	3.2.2 Synthesis and Characterization of Hydroxyapatite	
	Ceramic Varieties Using Eppawala High Grade Rock	
	Phosphate	131
	3.2.3 Preparation of Hydroxyapatite Ceramic Composite	
	Varieties Using Eppawala High Grade Rock Phosphate	
	for Biomedical Applications	138
	3.2.4 Preparation of Hydroxyapatite Ceramic Embedded	
	Polyester Matrix Composite Varieties for Automotive	
	and Industrial Applications	141
	3.2.5 Process and Characterize Ceramic Embedded E-glass	
	Fiber Reinforced Epoxy Matrix Composite Varieties for	
	Automotive and Industrial Applications	148

	3.2.6 Preparation of Silicon Carbide Embedded	
	Hydroxyapatite Composite Varieties for Automotive and	
	Industrial Applications	152
	3.2.7 Preparation of Boron Nitride Ceramic Embedded	
	Hydroxyapatite Composite Varieties for Automotive	
	and Industrial Applications	154
4.0	RESULTS AND DISCUSSION	156
	4.1 Processed Moisture Removed Eppawala High-Grade Rock	
	Phosphate (MRHERP)	156
	4.2 Synthesized Hydroxyapatite ceramic varieties using Eppawala	
	High-Grade Rock Phosphate	156
	4.3 Hydroxyapatite Ceramic Composite Varieties Using Eppawala	
	High-Grade Rock Phosphate for Orthopedics Applications	170
	4.4 Hydroxyapatite Ceramic Composite Varieties Using Eppawala	
	High-Grade Rock Phosphate for Dentistry Applications	179
	4.5 Processed Hydroxyapatite Ceramic Embedded Polyester Matrix	
	Composite Varieties for Automotive and Industrial Applications	188
	4.6 Processed Ceramic Embedded Epoxy Matrix Composite	
	Varieties for Automotive and Industrial Applications	212
	4.7 Processed Silicon Carbide Embedded Hydroxyapatite	
	Composites for Automotive and Industrial Applications	221
	4.8 Processed Boron Nitride Embedded Hydroxyapatite Composite	
	for Automotive and Industrial Applications	226
5.0	CONCLUSION	231
6.0	FUTURE WORKS	236
7.0	REFERENCES	
	APPENDICES	
	Appendix 1– List of Publications and Communications from Thesis	
	Appendix 2 – List of Awards from Thesis	
	Appendix 3 – Supplementary Documents	

LIST OF TABLES

Table 2.1	Apatite chemical and physical properties	17
Table 2.2	Hydroxyapatite chemical and physical properties	45
Table 2.3	Silicon carbide chemical and physical properties	55
Table 2.4	Boron nitride chemical and physical properties	61
Table 2.5	Methyl methacrylate (MMA) chemical and physical properties	73
Table 2.6	2-hydroxyethyl methacrylate (HEMA) chemical and physical	74
	properties	
Table 3.1	Raw materials and chemicals used for the study	122
Table 3.2	Details of instruments used for the study	125
Table 3.3	Details of ball milled batches of synthesized hydroxyapatite	
	products	136
Table 3.4	Composition of prepared Eppawala nano-hydroxyapatite filler	
	added polyester matrix (HApP) composites	142
Table 3.5	Composition of prepared Eppawala nano-hydroxyapatite filler	
	added E-glass fiber reinforced polyester matrix (HApPF)	
	composites	145
Table 3.6	Composition of ceramic E-glass fiber reinforced embedded	
	epoxy matrix composites	148
Table 3.7	Composition of silicon carbide embedded hydroxyapatite	
	(HAp-SiC) composites	153
Table 3.8	Composition of boron nitride embedded hydroxyapatite	
	(HAp-BN) composites	155
Table 4.1	Physical properties of synthesized hydroxyapatite ceramic	
	varieties	158
Table 4.2	XRF results of synthesized hydroxyapatite ceramic varieties	159
Table 4.3	Band assignments of the observed vibrational frequencies of	
	synthesized hydroxyapatite ceramic varieties	162
Table 4.4	Comparison between fertilizer cost, novel synthesized HAp	
	products costs and commercially available HAp product costs	168
Table 4.5	Percentage of economic profit from synthesized HAp products	169

Table 4.6	Results of XRF analysis for commercial bone cement	170
Table 4.7	SEM with EDS results for SSHAp/MMA composite, SGHAp2/	
	MMA composite, commercial bone cement/MMA mixture and	171
	human bone	
Table 4.8	Results of XRF analysis for commercial GIC cement	179
Table 4.9	EDS results for SSHAp/HEMA composite, SGHAp2/HEMA	
	composite, commercial GIC /HEMA mixture and human tooth	180
Table 4.10	Comparison of EDS results between processed HAp filler added	
	polyester matrix composites	188
Table 4.11	DSC and Tensile analyzed results for all processed HApP	
	composites	196
Table 4.12	Impact analyzed results for all processed HApP composites	198
Table 4.13	Results of XRF analysis for E glass fibers	200
Table 4.14	Comparison of EDS results between processed HAp filler added	
	polyester matrix composites	200
Table 4.15	DSC and Tensile analyzed results for all processed HApPF	
	composites	207
Table 4.16	Results of Impact analysis for processed HApPF composites	208
Table 4.17	Results of tensile tests for all processed epoxy matrix	
	composites	217
Table 4.18	Results of DSC analysis for all processed ceramic incorporated	
	E-glass fiber reinforced epoxy composites	218
Table 4.19	Results of impact tests for all processed ceramic incorporated E-	
	glass fiber reinforced epoxy composites	219
Table 4.20	Results of tensile tests for all processed silicon carbide embedded	
	hydroxyapatite (HAp-SiC) composites	225
Table 4.21	Results of tensile tests for all processed boron nitride embedded	
	hydroxyapatite (HAp-BN) composites	230

LIST OF FIGURES

Figure 1.1	Geographic location of Sri Lankan Eppawala rock phosphate	
	deposit	2
Figure 3.1	Eppawala high-grade rock phosphate (HERP)	121
Figure 3.2	Preparation of moisture removed high-grade Eppawala rock	
	phosphate powder (MRHERP)	130
Figure 3.3	Synthesis of Eppawala hydroxyapatite ceramic powder using	
	sol-gel technique, alcoholic route	131
Figure 3.4	Chemical reaction for the process of synthesizing Eppawala	
	hydroxyapatite ceramic powder using sol-gel technique,	
	alcoholic route	132
Figure 3.5	Reaction mechanism for the process of synthesizing Eppawala	
	hydroxyapatite ceramic powder using sol-gel technique,	
	alcoholic route	132
Figure 3.6	Synthesis of Eppawala hydroxyapatite ceramic powder using	
	sol-gel technique, acidified route	133
Figure 3.7	Chemical reaction for the process of synthesizing Eppawala	
	hydroxyapatite ceramic powder using sol-gel technique,	
	acidified route	134
Figure 3.8	Reaction mechanism for the process of synthesizing	
	Eppawala hydroxyapatite ceramic powder using sol-gel	
	technique, acidified route	134
Figure 3.9	Synthesis of Eppawala hydroxyapatite ceramic powder using	
	solid-state sintering technique	135
Figure 3.10	Chemical reaction for the process of synthesizing Eppawala	
	hydroxyapatite ceramic powder using solid-state sintering	136
Figure 3.11	Reaction mechanism for the process of synthesizing	
	Eppawala hydroxyapatite ceramic powder using solid-	136
	state sintering technique	
Figure 3.12	Schematic diagram for processing Eppawala nano-hydroxyapatite	
	filler added polyester matrix composites	143

Figure 3.13	Schematic diagram for the geometry of processed Eppawala	
	nano- hydroxyapatite filler added polyester matrix	
	composites	144
Figure 3.14	Schematic diagram for the sandwich-structure of processed	
	Eppawala nano-hydroxyapatite filler added E-glass fiber	
	Reinforced polyester matrix composites	146
Figure 3.15	Schematic diagram for processing ceramic embedded E-glass	
	fiber reinforced epoxy matrix composites using hand layup technique	150
Figure 3.16	Schematic diagram for the sandwich-structure of processed	
	ceramic embedded E-glass fiber reinforced epoxy matrix composites	151
Figure 3.17	Processing silicon carbide embedded hydroxyapatite	
	composites	152
Figure 3.18	Schematic diagram for the geometry of processed silicon	
	carbide embedded hydroxyapatite matrix composites	154
Figure 3.19	Processing boron nitride embedded hydroxyapatite	
	composites	154
Figure 3.20	Schematic diagram for the geometry of processed boron	
	nitride embedded Hydroxyapatite matrix composites	155
Figure 4.1	Moisture removed Eppawala high-grade rock phosphate	
	(MRHERP)	156
Figure 4.2	Sol-gel alcoholic hydroxyapatite (SGHAp1)	157
Figure 4.3	Sol-gel acidic hydroxyapatite (SGHAp2)	157
Figure 4.4	Solid-state sintered hydroxyapatite (SSHAp)	157
Figure 4.5	FTIR spectrum of synthesized hydroxyapatite	
	ceramic varieties and for human hard tissues	161
Figure 4.6	SEM image for SGHAp1-q material at 20kV with	163
	magnifications (a) 1500 (b) 5000	
Figure 4.7	SEM image for SGHAp2-q material at 20kV with	163
	magnifications (a) 1500 (b) 5000	
Figure 4.8	SEM image for SSHAp-q material at 20kV with	164
	magnifications (a) 1500 (b) 5000	

Figure 4.9	SEM images for SGHAp1-r material at 10kv	164
	withmagnifications (a) 1000 (b) 5000	
Figure 4.10	SEM images for SGHAp2-r material at 10kv with	164
	magnifications (a) 1000 (b) 5000	
Figure 4.11	SEM images for SSHAp-r material at 10kv with	164
	magnifications (a) 1000 (b) 5000	
Figure 4.12	XRD diffractogram of synthesized hydroxyapatite ceramic	
	varieties,	
	(a) SGHAp1 ceramic product (b) SGHAp2 ceramic product	
	(c) SSHAp ceramic product	165
Figure 4.13	TGA curves of synthesized ceramic varieties	166
Figure 4.14	Comparison between TGA curves of synthesized ceramic	167
	varieties with human hard tissues	
Figure 4.15	SEM images for SGHAp2/MMA composite at 10kV with	
	magnifications a) 500 b) 2000 c) 5000 d) 10000	172
Figure 4.16	SEM images for SSHAp/MMA composite at 10kV with	
	magnifications a) 500 b) 2000 c) 5000 d) 10000	173
Figure 4.17	SEM images for commercial bone cement/MMA composite at	
	10kV with magnifications a) 500 b) 2000 c) 5000 d) 10000	173
Figure 4.18	SEM images for human bone at 10kV with magnifications	
	a) 500 b) 2000 c) 5000 d) 10000	174
Figure 4.19	FTIR spectrum of commercial bone cement, human bone and	
	processed hydroxyapatite composites (SGHAp2/MMA and	
	SSHAp/MMA)	175
Figure 4.20	FTIR spectrum of MMA liquid monomer	176
Figure 4.21	XRD diffractogram of (a) SGHAp2/MMA composite	
	(b) SSHAp/ MMA composite (c) commercial bone cement	177
	mixture.	
Figure 4.22	TGA curves for commercial bone cement, human bone and	
	processed hydroxyapatite composites (SGHAp2/MMA and	
	SSHAp/MMA)	178

Figure 4.23	SEM images for SGHAp2/HEMA mixture at 10 kv with	
	magnifications a) 500 b)2000 c) 5000 d) 10000	181
Figure 4.24	SEM images for SSHAp with HEMA mixture at 10 kv with	
	magnifications a) 500 b)2000 c) 5000 d) 10000	182
Figure 4.25	SEM images for Commercial GIC mixture at 10 kv with	
	magnifications a) 500 b)2000 c) 5000 d) 10000	182
Figure 4.26	SEM images for human tooth at 10.0 kv magnifications	183
	a) 5000 b) 10000	
Figure 4.27	FTIR spectrum of commercial GIC mixture, human tooth and	
	processed hydroxyapatite composites (SGHAp2/HEMA and	
	SSHAp/HEMA)	184
Figure 4.28	FTIR spectrum of HEMA liquid monomer	185
Figure 4.29	XRD diffractogram of (a) SGHAp2/MMA composite (b)	186
	SSHAp/ MMA composite	
Figure 4.30	XRD diffractogram of 2-hydroxyethyl methacrylate	186
Figure 4.31	Comparison between TGA results of human tooth,	
	commercial GIC mixture, SGHAp2/HEMA composite and	
	SSHAp/HEMA composite	187
Figure 4.31	SEM images of 0% HApP material at10kv with magnifications	189
	(a) 5000 (b)100000	
Figure 4.32	SEM images of 5% HApP composite at 10kv with	189
	magnifications (a) 5000 (b)100000	
Figure 4.33	SEM images of 10% HApP composite at10kv with	189
	magnifications (a) 5000 (b)100000	
Figure 4.34	SEM images of 15% HApP composite at10kv with	190
	magnifications (a) 5000 (b)100000	
Figure 4.35	SEM images of 20% HApP composite at10kv with	190
	magnifications (a) 5000 (b)100000	
Figure 4.36	SEM images of 30% HApP composite at10kv with	190
	magnifications (a) 5000 (b)100000	
Figure 4.37	SEM images of 40%HApP composite at10kv with	191
	magnifications (a) 5000 (b)100000	

Figure 4.38	SEM images of 50% HApP composite at 10kv with	191
	magnifications a) 5000 (b)100000	
Figure 4.39	SEM images of 60% HApP composite at 10kv with	191
	magnifications a) 5000 (b)100000	
Figure 4.40	SEM images of 70% HApP composite at 10kv with	192
	magnifications a) 5000 (b)100000	
Figure 4.41	SEM images of 80% HApP composite at 10kv with	192
	magnifications (a) 5000 (b)100000	
Figure 4.42	SEM images of 90% HApP composite at 10kv with	192
	magnifications a) 5000 (b)100000	
Figure 4.43	FTIR spectrum of nano hydroxyapatite incorporated polyester	
	composites	193
Figure 4.44	Resulted XRD diffractogram of processed composites	195
Figure 4.45	Comparison of Tg and σ_{Max} values of processed HApP	
	composites	196
Figure 4.46	Comparison of TGA results between 0% HApP material,	
	15% HApP and 50% HApP composites	197
Figure 4.47	DMA resulted curves for 15% HApP composite sample	199
Eiguro 1 19	SEM images of 00/ Happe at 10ky (a) areas sectional and	
Figure 4.48	(b)longitudinal section	201
Figure 1 10	SEM images of 10% HApPE at 10 ky (a) cross sectional and	
Figure 4.49	(b) longitudinal section	201
Figure 4 50	SEM images of 50% HApPE at 10ky (a) cross sectional and	201
Figure 4.50	(b) longitudinal section	202
Figure 4 51	XRD diffractogram of NPRE material and 10%HApPE	202
1 iguie 4.51	composite	203
Figure 4 52	XRD diffractogram of E-glass fiber mat	203
Figure 4.52	FTIP spectrum of 0% HApPE and 10% HApPE composites	203
Figure 4.54	FTIR spectrum of E-glass fiber mats	204
1 15010 7.54	The spectrum of D glass neer mais	204
Figure 4.55	Comparison of TGA results between 0%HApP	205
	material,0%HApPF and 10%HApPF composites	203

Figure 4.56	Comparison of Tg and σ_{Max} values of processed HApPF	
	composites	206
Figure 4.57	Comparison of tan δ results for processed composite samples	209
Figure 4.58	Comparison of temperature vs storage modulus curves plotted	
	for processed composite samples	209
Figure 4.59	Comparison of Temperature vs Loss Modulus curves plotted	
	for processed composite samples	210
Figure 4.60	DMA resulted curves for 10% HApPF composite sample	210
Figure 4.61	SEM images for NE (control) at 10 kv with magnifications	212
	a) 500 b) 10000	
Figure 4.62	SEM images for 10% HApE at 10 kv with magnifications	213
	a) 500 b) 10000	
Figure 4.63	SEM images for 10% SiCE at 10 kv with magnifications	213
	a) 500 b) 10000	
Figure 4.64	SEM images for 5% BNE at 10 kv with magnifications	213
	a) 500 b) 10000	
Figure 4.65	Resulted FTIR diffractogram of processed epoxy matrix	214
	composites	
Figure 4.66	XRD spectrum of the processed epoxy matrix composites	216
Figure 4.67	TGA analysis results of the processed epoxy matrix composite	220
Figure 4.68	SEM images for 0%HAp-SiC composites at 10 kv	221
	magnifications a) 2000 b) 5000	
Figure 4.69	SEM images for 10%HAp-SiC composites at 10 kv	
	magnifications a) 5000 b) 10000	221
Figure 4.70	FTIR spectrum of 10%HAp-SiC composites	222
Figure 4.71	XRD spectrum of the processed 0%HAp-SiC and 10% HA-	223
	SiC composites	
Figure 4.72	TGA curve of the processed 10% HA-SiC composites	224
Figure 4.73	SEM images for 0%HAp-BN composites at 10 kv with	226
	magnifications a) 2000 b) 5000	
Figure 4.74	SEM images for 10%HAp-BN composites at10 kv with	226
	magnifications a) 250 b) 5000	

Figure 4.75	FTIR spectrum of processed 10%HAp-BN composites	227
Figure 4.76	XRD diffractogram of processed 0%HAp-BN and 10%HAp-	228
	BN composites	
Figure 4.77	TGA curve for processed 10%HAp-BN composites	229

ABBREVIATIONS

ASTM	American society for testing and materials
ATR	Attenuated total reflection
Avg.	Average
BNE	Boron nitride embedded E-glass fiber reinforced epoxy matrix
	composites
BNNT	Boron nitride nanotube
CMC	Ceramic matrix composites
(CR)-glass	Corrosion resistant glass
CTE	Coefficient of thermal expansion
CVD	Chemical vapor deposition
DC	Deficit counter
DMA	Dynamic mechanical analysis
DMTA	Dynamic-mechanic thermal analysis
DMPT	N, N-dimethyl p-toluidine
DSC	Differential scanning calorimetry
EDS	Energy dispersive x-ray spectroscopy
ERP	Eppawala rock phosphate
FE-SEM	Field emission scanning electron microscopy
FOS	Fiber optic sensors
FRP	Fiber reinforced polyester
FTIR	Fourier-transform infrared spectroscopy
GF	Glass fibers
GIC	Glass ionomer cement
НАр	Hydroxyapatite
HAp-BN	Boron nitride embedded hydroxyapatite composites
HApE	Hydroxyapatite embedded E-glass fiber reinforced epoxy matrix
	composites
HApP	Eppawala nano hydroxyapatite filler added polyester matrix composites

HApPF	Eppawala nano hydroxyapatite filler added E- glass fiber reinforced
	polyester matrix composites
HAp-SiC	Silicon carbide embedded hydroxyapatite composites
HEMA	2-hydroxyethyl methacrylate
HERP	Eppawala high-grade rock phosphate
HDPE	High-density polyethylene
hrs.	Hours
(HS)-glass	High strength glass
LDPE	Low-density polyethylene
Lkr.	Sri Lankan rupees
MEKP	Methyl ethyl ketone peroxide
MEMS	Microelectromechanical systems
MESFETs	Metal semiconductor field effect transistors
MFC	Macro fiber composites
MFCs	Magnetic framework composites
MMA	Methyl methacrylate
MMABS	Methyl methacrylate-butadiene-styrene
MMC	Metal matrix composites
MOFs	Metal-organic frameworks
MOSFETs	Metal oxide semiconductor field effect transistors
MRHERP	Moisture removed Eppawala high-grade rock phosphate
MWCNTs	Multi-wall carbon nanotubes
ND	Not in the detection level
NE	Pure cross-linked epoxy material
NP	Cross-linked pure polyester material
PDI	Poly dispersity index
PHBV	Poly hydroxybutyrate co vel
PHEMA	Poly(2-hydroxyethyl methacrylate)
PMC	Polymer matrix composites
PMMA	Poly (methyl methacrylate)
PSA	Particle size analyzer
PVC	Polyvinyl chloride

RD	Reactive distillation
Rf	Reflective index
SBF	Stimulated body fluids
SCWS	Silicon carbide whiskers
SD	Standard deviation
SEM	Scanning electron microscopy
SGHAp1	Sol gel alcoholic hydroxyapatite powder
SGHAp2	Sol gel acidified hydroxyapatite powder
SiCE	Silicon carbide embedded E-glass fiber reinforced epoxy matrix
	composites
SSHAp	Solid state sintered hydroxyapatite powder
TGA	Thermo-gravimetric analysis
UTM	Universal testing machine
US	United States
UV	Ultra violet
VOC	Volatile organic compounds
wt	Weight
XRD	X-ray diffraction spectroscopy
XRF	X-ray fluorescence spectroscopy

ACKNOWLEDGEMENT

With immense pleasure, I express my deep sense of gratitude and heartfelt thanks to my supervisor Dr. R.D. Gunaratne, Head, Department of Materials and Mechanical Technology, Faculty of Technology, University of Sri Jayewardenepura, for his expert guidance, insightful criticisms, and continued encouragement throughout the study as well as in the preparation of the thesis. Without his support, patience, and understanding, this study would not have been completed. I wish to express my deep sense of gratitude to Prof. H.M.J.C. Pitawala, Dean, Faculty of Applied Sciences, Uva Wellassa University, for his valuable guidance, constructive suggestions, and continuous support in accomplishing this work as my co-supervisor.

It is a great privilege for me to thank UGC Chairman, Sr. Prof. Sampath Amaratunge, for initiating our research grants as former Vice-Chancellor, University of Sri Jayewardenepura and the Research Council, University of Sri Jayewardenepura, for fully funding my research. Especial thanks are also extended to all academic as well as non-academic staff of both the Faculties of Technology and Graduate Studies, University of Sri Jayewardenepura, and the Faculty of Applied Sciences, Uva Wellassa University for their continuous support throughout my research. My heartfelt thanks to Mrs. Darshani Ekanayake for her continuous guidance and support throughout my research.

I wish to express my sincere thanks to Lanka Phosphate Ltd. for providing raw material. I greatly appreciate the valuable support and guidance received from the Orthopedic and Dentistry units at the General Hospital, Badulla.

I cannot forget my family; Appachchi, Amma, Isuru malli, Thanula malli, Loku amma, Chutti amma, Kalu amma who are my strength in encouraging me to fulfill my dreams. My sincere thanks to Waththe mama, Nanda and Nangi as well.

My heartiest gratitude goes to Mrs. Manjula, Mrs. Koorey, Mrs. Primali, Mr. Sumith, Ms. Sachinda, Ms. Umaya, Mrs. Sachini, Ms. Tharusha, Ms. Rajindra, Mrs. Deepani, Ms. Dilmi, Mr. Chandima, Mrs. Nadeema, Mrs. Randika, Ms. Sulochani, Ms. Gimhani and Mrs. Pamoda and Mrs. Shalika. With immense pleasure, I express my deep sense of gratitude and heartfelt thanks to all who helped me, even by a single word, to encourage me to continue this task with all other commitments.

SYNTHESIS AND CHARACTERIZATION OF CERAMIC COMPOSITES DERIVED FROM EPPAWALA APATITE FOR AUTOMOTIVE AND INDUSTRIAL APPLICATIONS

Hapuhinne Korale Gedara Kalinga Damsisi Kumari Hapuhinna

ABSTRACT

The Sri Lankan Eppawala rock phosphate deposit, found in the North Central province, is a non-renewable natural resource that does not replenish over humanly meaningful time scales. It contains nearly 34% to 40% phosphorous pentoxide (P₂O₅). Even though there are numerous viable and value-added phosphorous (P) industries, Sri Lanka exports rock phosphate as a raw material at lower prices to other developed nations. Considering its resource-related wealth, it is a timely requirement to obtain the proper compensation for this non-renewable resource. Therefore, it is crucial to consider developing and commercializing fresh P-related finds from the Eppawala rock phosphate deposit. In order to value add Eppawala high-grade rock phosphate (HERP), this dissertation thoroughly and critically discusses three patented innovative processes (sol-gel alcoholic route, solgel acidified route, and solid-state sintering technique) for synthesizing three patented nano-hydroxyapatite (HAp) ceramic varieties. It provides significant insights into process composites incorporating those synthesized HAp ceramic varieties with different polymers [methyl methacrylate (MMA), 2-hydroxyethyl methacrylate (HEMA)], polyester, epoxy, glass fibers, silicon carbide (SiC) and boron nitride (BN) which can be used for several biomedical, automotive and industrial applications. Synthesized nano-HAp ceramic varieties and processed HAp incorporated composites were characterized using X-ray fluorescence spectroscopy (XRF), particle size analysis (PSA), X-ray diffraction spectroscopy (XRD), fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM with

EDS), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), tensile tests, and impact tests in order to find out composition, the size distribution of particles, crystallographic structure, identification of functional groups, the morphology of micro/nanostructures, glass transition temperatures, thermal stability, thermomechanical properties, tensile properties, and impact strength. American society for testing and materials (ASTM) standards were applied for all mechanical analyses. This dissertation compared those results with human hard tissues, commercial products, and literature according to their nature of applications. It has been concluded that HAp can be synthesized using the three routes to add value, HERP. These methods are highly cost-effective. Synthesized hexagonal, nano-HAp products perform similarly in chemical composition and structure to mammalian hard tissues via exhibiting different characteristics as bioceramic. The resulting composite materials obtained after reinforcing hydroxyapatite ceramic products with MMA and HEMA orderly for orthopedics and dentistry applications have proven that their performances are better than commercial products. It shows the highly profitable possibility of introducing Eppawala HAp products into the market as value-added bioceramic and its composites. Processed HAp incorporated E-glass fiber reinforced polyester matrix composites and ceramic (HAp/SiC/BN) incorporated epoxy matrix composites in this study demonstrate better properties than pure polyester and epoxy materials. Resulted composites can be used for automotive and aircraft applications. Also, it has confirmed the possibility of processing SiC and BN incorporated HAp composites under high temperatures (1600°C-1650°C), for other relevant industrial applications.

Keywords: Eppawala high-grade rock phosphate; Hydroxyapatite; Hydroxyapatite composites; Biomedical applications; Automotive applications; Industrial applications

xix