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Abstract. A study of rainfall pattern and its variability in South Asian
countries is vital as those regions are frequently vulnerable to climate
change. Models for rainfall have been developed with different degrees
of accuracy, since this key climatic variable is of importance at local and
global level. This study investigates the rainfall behaviour using the long
memory approach. Since the observed series consists of an unbounded
spectral density at zero frequency, a fractionally integrated auto regres-
sive model (ARFIMA) is fitted to explore the pattern and characteristics
of the weekly rainfall in the city of Colombo. The maximum likelihood
estimation (MLE) method was utilized to obtain estimates for model
parameters. To evaluate the suitability of the method for parameter
estimation, a Monte Carlo simulation was done with various fraction-
ally differenced parameter values. Model selection was done based on
the minimum of the mean absolute error and validated by the forecast-
ing performance that was evaluated using an independent sample. The
experimental result yielded a good prediction accuracy with a best fitted
long range dependency model and a coverage probability of 95% in terms
of prediction intervals that resulted in closer nominal coverage.
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1 Introduction

Modelling rainfall is a challenging task for researchers due to the high degree of
uncertainty in atmospheric behaviour. Observational evidence indicates that the
climate change has significantly affected global community at a different level.
Climate vulnerabilities are expected to be critical in Sri Lanka in the various
sectors as agriculture, fisheries, water, health, urban development, human set-
tlement, economic infrastructure, biodiversity and ecosystem in the country [22].
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Information on key climatic variable predictions allow to various stakeholders to
prompt themselves for action in order to reduce adverse impacts and enhance
positive effects of climatic variation. Rainfall is the one of the most important
climatic variable to tropical country like Sri Lanka and this is the variable which
give erratic variation at any time in the country. Sri Lanka receives rainfall dur-
ing the year, with a mean annual rainfall varying from 900 mm in the dry zone
to over 5000 mm in the wet zone. Annual rainfall pattern in many parts of Sri
Lanka are bimodal and predominantly governed by a seasonally varying mon-
soon system. Sri Lanka needs to address climate change adaptation to ensure the
economic development by the careful investigating of the information on rainfall
pattern and its variability which resulting from the predictions of the best fitted
rainfall models in various regions. Rainfall analysis is not only important for agri-
cultural areas but also for the urban areas since those areas engage with many
activities such as construction, industrial planning, urban traffic, sewer systems,
health, rainwater harvesting and climate monitoring. Rainfall is the main source
of the hydrological cycle and provides practical benefits through its analysis.
Thus, modelling rainfall is one of the key requirements in the country, some of the
researchers made attempt to analyse weekly rainfall in Sri Lanka using percentile
bootstrap approach to identify the extreme rainfall events [24]. Another study
was carried out by the Silva and Peiris [25] to identify the most likelihood time
period to form the extreme rainfall events during the South west moons time span
by fitting best probability distribution for the weekly rainfall percentiles. Since
the Sri Lanka is a developing country which hasn’t high technology to sensitive
to some important climatic information with related to rainfall is one of the rea-
son cause to low prediction accuracy. However, researchers made effort to model
rainfall of the country with increasing degree of accuracy using different tech-
niques. Silva and Peiris [26] discussed problems faced in modelling rainfall which
showed positive skewed distribution with longer tail to the right. Rainfall is one
of the most difficult variables of the hydrological cycle to understand and model
due to its high variability in both space and time [13]. However, several modelling
strategies have been applied for the forecasting of rainfall in different areas all
over the world. Box-Jenkins autoregressive integrated moving average (ARIMA)
model has been widely used for rainfall modelling ([11,20,29,30]). Some of the
researchers have made attempts to model rainfall using artificial neural net-
works ([10,18]). However, very few studies on rainfall in context of long memory
can be identified in literature. Granger and Joyeux [15] and Hosking [17] initially
proposed a long memory class of models, known as the fractionally integrated
autoregressive moving average (ARFIMA) process for stochastic processes. The
model defined as ARFIMA (p, d, q) allows the parameter “d” to take fractional
values for differencing. There is a fundamental change in the correlation structure
of the ARFIMA model, when compared with the correlation structure of the con-
ventional ARIMA model ([6]). According to Granger and Joyeux [15], the slowly
decaying autocorrelation exhibited in long range dependency or long memory
models differ from stationary ARIMA models that decay exponentially. Many
researchers proposed different methods to estimate the fractional differencing
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parameter. Porter-Hudak and Geweke [14] proposed a method for estimating
the long memory differencing parameters based on a simple linear regression of
the log periodogram. An approximate maximum likelihood method for param-
eter “d” was proposed by Fox and Taqqu [12]. An exact maximum likelihood
estimation method for differencing parameter was introduced by Sowell [27].
Chen et al. [6] developed a regression type estimator of “d” using lag window
spectral density estimators. Number of studies were carried out by comparing
various properties of the ARFIMA model based on the estimation method used
for the fractionally differencing parameter. (See [2,3,7,16,23]). Dissanayake [9]
established a methodology to find an optimal lag order of a standard long mem-
ory ARFIMA series within a short process time duration and applied the theory
to Nile river data.

Though short memory models have been developed for rainfall still there
is a noticeable gap modeling persistent rainfall in view of long memory. The
main goal of this study is to fit an ARFIMA model for a weekly rainfall data
series in the city of Colombo by capturing the long range dependency features.
The paper outline is shaped as follows. In Sect. 2, the long memory ARFIMA
model is introduced and some properties of the model are discussed. The model
parameter estimation procedure is also described within the section. The results
of the Monte Carlo simulation which was used to evaluate the suitability and
reliability of the parameter estimation procedure is presented in Sect. 3. Section 4
provides brief details on prediction intervals for forecasting values relevant to the
utilized series. The results of weekly rainfall modelling are presented in Sect. 5.
Final section, comprises of the conclusion and proposed suggestions.

2 ARFIMA Long Range Dependency Model

ARFIMA is a natural extension of the Box and Jenkins model with non-integer
values assigned for d. The ARFIMA (p, d, q) model of a process {Yt}t∈Z is given
by the formula

φ(B)∇d(Yt − μ) = ψ(B)εt (1)

Where μ is the mean of the process, {εt}t∈Z is a white noise process with zero
mean and variance σ2

ε . B is the backward shift operator such that yt−n = Bnyt,
φ(B) and θ(B) are autoregressive and moving average polynomials of order p
and q respectively.

φ(B) =
p∑

i=1

φiB
i 1 ≤ i ≤ p (2)

ψ(B) =
P∑

j=1

ψjB
j 1 ≤ j ≤ q (3)

where d is called as the long memory parameter and differencing operator ∇d is
defined as,

∇d = (1 − B)d =
∞∑

k=0

(
d

k

)
(−B)k (4)
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Where
(

d
k

)
= Γ(1+d)

Γ(1+k)Γ(1+d−k) .

If d > −0.5 then the process is invertible and if d < 0.5 then the process
is stationary. Therefore d ∈ (− 1

2 , 1
2 ) shows that the process is stationary and

invertible. The spectral density function of the {Yt}t∈Z is f(ω) that can be
written as

f(ω) = (2sin
ω

2
)−2d 0 < ω ≤ π (5)

f(ω) ≈ ω−2d ω → 0
The spectral density function f(ω) is unbounded when the frequency is near

zero. Also, the autocovariance function and correlation function of the process
can be expressed as follows

γk =
(−1)k(−2d)!

(k − d)!(−k − d)!
(6)

ρk =
d(1 + d)...(k − 1 + d)

(1 − d)(2 − d)(3 − d)...(k − d)
(k = 1, 2, 3, 4...) (7)

Hosking (1981) showed that the auto correlation function of the process satisfies
the expression ρk ≈ k2d−1 when 0 < d < 1/2. Thus, the autocorrelation of the
ARFIMA process decays hyperbolically to zero as k → ∞ and in contrast, the
auto correlation function of the ARIMA process has a exponential decay. The
process with d = 0 reduces to a short memory ARMA model.

Let Z denote a series of “n” observations with mean μ and variance σ2
Z . If

the decay parameter is considered as α, then the natural fractional differencing
parameter “d” can be written as d = (1 − α)/2.
The log likelihood function of the Exact Gaussian can be written as

l(α, σ2
y) = −1

2
(log det(Γn) + Z ′Γ−1

n Z ′) (8)

The arfima package (See [28]) in R optimized the log likelihood function and
obtained the exact maximum likelihood estimators. Two algorithms namely
Durbin-Levinson and Trench algorithms were utilized to maximize the likeli-
hood and obtain optimal simulation and forecasting results.

3 Result of the Monte Carlo Simulation

A number of Monte Carlo experiments were carried out to evaluate the perfor-
mance of the maximum likelihood method used for parameter estimation. The
simulation was done based on various fractional differencing parameter values
with 1000 replications. The four different series lengths (n = 100, n = 200,
n = 500 and n = 1000) were considered for the simulation. The simulation
results provided fractionally differenced parameter estimates and corresponding
standard and mean square errors. Monte Carlo experiment was conducted on
a simulated ARFIMA(0,d,0) series with parameter values: d = 0.1, d = 0.15,
d = 0.3 and d = 0.45.
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The simulation was carried out using the R programming Language (Ver-
sion 3.4.2) utilizing a HP11(8 GB, 64 bit) computer. The standard errors of
the estimates SD(d̂) and mean square error of the estimates MSE(d̂) can be
expressed as;

SD(d̂) =

√√√√
R∑

r=1

(d̂r − d̂)/R MSE(d̂) =
R∑

r=1

(d̂r − d)2/R

Where d̂r is the MLE of d for the rth replication. The value R denotes the
number of replications (R = 1000 for all tabulated simulation results of this
paper). Tables 1, 2, 3 and 4 present the average of the estimated d, corresponding
standard error and MSE of the estimator.

According to the results in Tables 1, 2, 3 and 4, the performance of the
maximum likelihood estimator is reasonably accurate. It can be clearly seen that
the parameter bias has decreased with the increase in sample size. Furthermore,

Table 1. MLE of d for a generating process of ARFIMA(0,d,0) with d = 0.1. The
results are based on 1000 Monte Carlo replications

n d̂ SD(d̂) MSE(d̂)

100 0.0517 0.0912 0.0106

200 0.0748 0.0626 0.0045

500 0.0885 0.0367 0.0014

1000 0.0949 0.0254 0.0006

Table 2. MLE of d for a generating process of ARFIMA(0,d,0) with d = 0.15. The
results are based on 1000 Monte Carlo replications

n d̂ SD(d̂) MSE(d̂)

100 0.1048 0.0915 0.0104

200 0.1265 0.0593 0.0040

500 0.1408 0.0367 0.0014

1000 0.1456 0.0254 0.0006

Table 3. MLE of d for a generating process of ARFIMA(0,d,0) with d = 0.3. The
results are based on 1000 Monte Carlo replications

n d̂ SD(d̂) MSE(d̂)

100 0.2493 0.0877 0.0102

200 0.2726 0.0575 0.0040

500 0.2892 0.0362 0.0014

1000 0.2947 0.0251 0.0006
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Table 4. MLE of d for a generating process of ARFIMA(0,d,0) with d = 0.45. The
results are based on 1000 Monte Carlo replications

n d̂ SD(d̂) MSE(d̂)

100 0.3774 0.0695 0.0101

200 0.4079 0.0477 0.0040

500 0.4310 0.0314 0.0013

1000 0.4435 0.0270 0.0007

the results provide evidence that the parameters become consistent with the
increase in series length. As we expected the standard deviation and the MSE
of the estimators have decreased with the increase in series length.

4 Forecast and Prediction Intervals

Forecasts are obtained based on the best fitted long memory model. However,
predicting of future values along with their prediction intervals become more
beneficial in long memory time series analysis. The lower (L) and upper (U)
boundaries covering the forecast values with known probability are simply called
prediction intervals of the form [L, U]. A detailed review of approaches in calcu-
lating interval forecast using time series was described in Chatfield [5]. Charles
et al. [4] made an effort to make prediction intervals to forecast US core inflation
values that provided a unique fractional model. Prediction intervals were utilized
to forecast tourism demand by Chu [8]. Zhou et al. [31] suggested a prediction
interval method to predict aggregates of future values derived from a long mem-
ory model. A new bootstrap method for autoregressive models was proposed
by Hwang and Shin [19]. Ali et al. [1] suggested a Sieve bootstrap approach to
construct intervals for a long memory model. Prediction interval approach was
utilized to measure the uncertainty about long-run predictions by Muller and
Watson [21].

5 Application

Sri Lanka is a tropical country in South Asian region located at the latitudes of
5◦ 55 N and 9◦ 51 N and the longitudes of 79◦ 41 E and 81◦ 53 E with
an area of 65610 km2 and the Colombo city is the commercial capital of Sri
Lanka. Daily rainfall data of Colombo were collected from 1990 to 2015 from the
Department of Meteorology, Sri Lanka for this analysis. The daily rainfall (mm)
data has been converted into weekly rainfall by dividing a year into 52 weeks such
that week 1 corresponds to 1–7 January, Week 2 corresponds to 8–14 January
and so on. The data during the time span from 1990 to 2014 was used to build the
model while the rest was used for model validation. To examine the temporal
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Fig. 1. Time series plot of weekly rainfall series from 1990 to 2014

variability of the rainfall series, time series plots were taken and presented in
Fig. 1.

The time series plot explores the random behaviour of weekly rainfall during
the considered time span from 1990 to 2014. In order to identify the correlation
structure of the observed series, the autocorrelation and partial auto correlation
plots were taken and those results are shown in Figs. 2 and 3 respectively.

In order to study the long memory features of the weekly rainfall series,
the periodgram was obtained and presented in Fig. 4. The maximum spectrum
density is 0.0385185 given at a frequency which is very close to zero. Based on
those characteristics the series displays long memory. Thus, we conclude that
the ARFIMA standard long memory model may be suitable for the observed
weekly rainfall series. Long range correlation of observed data were considered
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Fig. 2. Autocorrelation plot of the series from 1990 to 2014

in long memory modelling. Various ARFIMA models were fitted for the data set
that vary from 1990 to 2014 (series length = 1300).

Those fitted models were employed to predict the weekly rainfall during the
time span from 2014 to 2015 and best fitted model is selected with the minimum
mean absolute error (MAE). The MAE can be written as,

MAE =
1
n

n∑

i=1

|ei|

Where ei is the forecasting error and n is the length of the forecasting series.
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Fig. 3. Partial autocorrelation plot of the series from 1990 to 2014

The best fitted model and the corresponding parameter estimates are pre-
sented in Table 5. The ARFIMA (4,0,4) model was found to be the best fit for
the weekly rainfall series returning the smallest MAE.

All model parameters except the constant are significant at the 0.05 level
of significance. The residual analysis of the fitted model was performed and
found the uncorrelated at a 5% level of significance. Furthermore, the model
was tested for weekly rainfall data in 2015 and the result is presented in Table 6.
Figure 5 illustrates the weekly rainfall over the year 2015 along with the predicted
estimates.
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Fig. 4. The periodgram of the rainfall series from 1990 to 2014

Table 5. Fitted model for the weekly rainfall series ARFIMA (4,0,4) with p = 4,
q = 4, d = 0.05792421

Coefficients φ1 φ2 φ3 φ4 θ1

Estimate 1.2059 −0.2493 0.5765 −0.6752 1.1243

Standard error 0.0242 0.0454 6.324e-07 6.324e-07 0.0231-Correct value (CV)

Z-value 4.9768e01 5.4903 9.1153e05 −1.0676e06 4.8638e01

Pr(>|Z|) 0.0000 0.0005 0.0000 0.0000 0.0000
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Table 5. (continued)

Coefficients θ2 θ3 θ4 Constant d

Estimate −0.1131 0.5220 −0.6743 −0.0163 0.0579

Standard error 0.0365 (CV) 0.0354 (CV) 0.0215 0.0380 0.0276

Z-value −3.0992 1.4735e01 −3.1363e01 −4.2907e-01 2.0950

Pr(>|Z|) 0.0019 0.0000 0.0000 0.6678 0.0361

Table 6. Absolute Forecast Error for independent sample (2015)

Absolute forecasting error in mm ARFIMA number of weeks percentage

0–10 10(19.2)

11–15 6(11.5)

16–20 6(11.5)

21–25 4(7.7)

26–30 6(11.5)

31–35 1(1.9)

36–40 4(7.7)

41–45 1(1.9)

46–50 2(4.0)

More than 50 12(23.1)

Fig. 5. Forecasted and actual weekly rainfall in 2015
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Fig. 6. Prediction intervals for forecasted rainfall values in 2015

According to Fig. 5, it can be seen that the predicted values are in consid-
erable good agreement with the actual rainfall values. The result of the 95%
prediction interval also provides encouraging prediction accuracy with a 93.23%
coverage probability (Fig. 6).

6 Conclusion

Observed rainfall series illustrates long memory features with an unbounded
spectral density. Therefore a standard long memory ARFIMA model was fitted
to capture the rainfall pattern and its variability. The Monte Carlo simulation
results prove the accuracy of the maximum likelihood method used to estimate
the parameters of the model. Furthermore, it is noticed that the parameter
bias has decreased and the parameters become consistent with the increase of
the simulated series length. ARFIMA(4,0.0579,4) model was found to be the
best fitted model that provided a minimum MAE. The out of sample prediction
values give good conformity with the actual weekly rainfall in 2015. The 95%
prediction intervals also give a promising result to capture the real dynamics of
the persistent rainfall. For future work it is suggested that prediction intervals
using the bootstrap re-sampling approach may forecast estimates with a higher
degree of accuracy.
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