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Abstract. The quantity of rainfall and its related events have become
more and more uncertain due to climatic variability. The complexity
of the rainfall pattern increases due to the changes of the atmospheric
behavior from time to time. Relatively, few measures have been taken
to perform the modeling of rainfall in the context of long memory.
This paper provides an assessment of such a phenomenon by fitting an
appropriate time series model. A long range dependency model is pro-
posed to fit weekly rainfall data to explore characteristics of persistence
through an unbounded spectral density. Careful examination of the data
exhibits periodic fluctuations as an additional feature. Since, the rainfall
series exhibits periodic variations and persistence, a seasonal autoregres-
sive fractionally integrated moving average (SARFIMA) model is fitted.
Parameters of it are estimated using maximum likelihood estimation
(MLE) method. A Monte Carlo simulation was carried out with differ-
ent seasonal and non seasonal fractionally differing parameters to mea-
sure the suitability of the method for parameter estimation. Best fitted
model is chosen based on the minimum of the mean absolute error and
the forecasting performance are compared with the result of Seasonal
autoregressive integrated moving average (SARIMA) using an indepen-
dent sample as a creative contribution.
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1 Introduction

Sri Lanka is highly vulnerable to the impacts of climate change which includes
severe droughts, heavy flash floods and landslides over the past years. These
whether related disasters affects many sectors in the economy and threaten to
sustainable development of the country. Temporal variability of rainfall in the
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country is changing frequently which affect on staple food production such as
rice, coconut and tea (Baba [1], Fernando et al. [17], Wejerathne et al. [41]).
Sri Lanka is on a path of rapid urbanization. Thus, many damages can occur
due to changes in rainfall behavior in urban areas with a high population den-
sity and modern infrastructure. Lo and Koralegedera [25] claimed that the more
cities including Colombo in Sri Lanka are at a risk of water related issues due
to changes in rainfall patterns. Also, each year the government of Sri Lanka
spends huge amount of money to reconstruct and renovate the infrastructures
which damage caused by floods in the wet zone (Sri Lanka Rapid Post Disaster
Needs Assessment [37]). Accurate information on rainfall predictions enhances
the ability to utilize the water resource in a productive manner. Those details of
temporal variability of rainfall is not only important for agricultural activities,
but also for important subject domains in urban areas such as construction,
industrial planning, urban traffic and sewer systems, health, tourism, rainwater
harvesting and climate monitoring. Furthermore, the importance of analysis of
weekly rainfall pattern is highlighted by Silva and Peiris [34] and they analyzed
weekly rainfall in Sri Lanka using percentiles bootstrap approach. Moreover,
the same authors (Silva and Peiris [35]) carried out another study to explain
the behavior of the south west monsoon rainfall by utilizing the weekly rain-
fall percentiles along with the 95% confidence interval bands using best fitted
distribution for weekly rainfall in Colombo city. However, they emphasized pre-
cise rainfall prediction is very difficult in the tropical country like Sri Lanka
with the low technology. According to Luk [26] also, quantitative forecasting
of rainfall is extremely difficult. Silva and Peiris [36] discussed the problems
faced when analyzing rainfall amount which has heavy skewed distribution using
Weibull confidence interval for rainfall percentiles. The main goal of this study
is to suggest a best fit long-memory model to capture weekly rainfall behav-
ior. SARFIMA model is utilized in such a context. The outline of this paper is
as follows. Section 2 describes past works related to long memory models. The
functional form of the SARFIMA model with the maximum likelihood estima-
tion procedure is described by Sect. 3. It is followed by Sect. 4 that will present
the Monte Carlo simulation results to assess the accuracy and reliability of the
estimation procedure. Section 5 will provide results of weekly rainfall modeling.
Finally, Sect. 6 provides some concluding remarks.

2 Literature Related to Long Memory Models

Time series models have been developed with an increasing degree of accuracy
over the last few decades. The short memory autoregressive moving average
(ARMA) model introduced by Box and Jenkins [5] has been extensively used
for a variety of applications. Recently, time series models with long memory fea-
tures became very popular among researchers in many fields such as statistics
and econometrics. Features of a fractionally integrated autoregressive moving
average (ARFIMA) long memory model was initially introduced by Granger
and Joyeux [20] and Hosking [24]. It was an extension of the traditional ARMA
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process with a fractional differencing parameter. The hyperbolic decay of the
autocorrelation function and an unbounded spectral density are two key fea-
tures of the ARFIMA process. A number of estimation methods of the frac-
tional differencing parameter were proposed by Porter-Hudak and Geweke [19],
Fox and Taqqu [18], Dahlhaus [10], Sowell [38], Chen et al. [7] and Robinson
[33]. Comparison study assessments were done by Cheung and Diebold [8] on
maximum likelihood estimators for fractionally differenced parameters using two
types of maximum likelihood (ML) estimators in the form of frequency-domain
ML and exact domain ML of time series processes with an unknown mean. Small
sample properties of four ML estimators of the ARFIMA model was investi-
gated through a Monte Carlo simulation by Hauser [23]. A study done by Wang
et al. [40] evaluated the ability of detecting existence of long-memory in time
series using four methods: Lo’s modified rescale adjusted range test, Geweke and
Porter Hudak test and two other approximate maximum likelihood estimation
methods. Some of the research done by Chan and Palma [6], Palma [28] and
Beran et al. [3] carried out an assessment of ARFIMA model parameters and
their properties. Dissanayake [11] introduced a rapid lag order detection mech-
anism of the standard long memory ARFIMA process. Due to the practical
success of the ARFIMA model, a more generalized fractionally differenced long
memory time series model called the Gegenbauer ARMA (GARMA) was probed
in detail by Gray et al. [21]. Chung [9] extended the work in introducing a grid
based parameter estimation procedure of an elementary GARMA process. Fresh
interest in the econometric community infused into the process the introduction
of a new class of models with heteroskedasticity in Dissanayake and Peiris [12].
It was followed by the casting of the process driven by Gaussian white noise
in state space by Dissanayake et al. [13] to establish a parameter estimation
based optimal lag order validated by predictive accuracy. A similar experiment
in which the process was driven by Generalized Autoregressive Conditionally het-
eroskedastic (GARCH) errors (instead of Gaussian white noise) was presented
in Dissanayake et al. [14] with the validation of parameter estimation based
optimal lag order done through log likelihood measures. A concise summary of
fractionally differenced Gegenbauer processes with long memory was provided
in Dissanayake [15]. An extensive review of fractionally differenced Gegenbauer
processes with long memory is found in Dissanayake et al. [16]. It refers to cer-
tain conceptual paradigms presented in the survey on long memory by Guegan
[22] in which an extended k-factor Gegenbauer process becomes a highlight of
rigour. Though the ARFIMA model was able to capture the long range depen-
dency, it does not take into account the seasonal variation patterns present in
some real data set. The seasonal autoregressive fractionally integrated moving
average (SARFIMA) of Porter-Hudak [30] is a natural extension of the ARFIMA
process with an additional seasonal filter. The model consists of long memory
dependency features with periodic behavior in terms of the data. SARFIMA
model was utilized for forecasting of the monthly IBM product revenue in Ray
[32]. Peiris and Singh [29] suggested a convenient method to calculate predic-
tors for seasonal and non seasonal fractional parameters of long memory models
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under certain conditions. The work done by Bisognin and Lopes [4] described
number of properties of seasonally fractional ARMA process in detail. SARFIMA
model was applied to forecast Iraqi oil production and model parameters were
estimated using conditional sum of squares by Mostafaei and Sakhabakhsh [27].
Additionally, Reisen et al. [31] proposed a semi parametric approach to estimate
two seasonal fractional parameters in a SARFIMA model and the performance
was evaluated through a Monte Carlo experiment. Very few attempts have been
made to study the rainfall behavior in context of long memory. A study done
by Yaya and Fashae [42] made an attempt to fit SARFIMA models for rainfall
data in six rainfall zones of Nigeria. However, they could not find significant
SARFIMA models which can capture the seasonal behavior with the long range
dependency of the real data. Utilizing a SARFIMA model to assess seasonal and
persistent properties of weekly rainfall in an emerging Asian economy such as
Sri Lanka is missing in the current literature. Theoretical concepts linked with
the long memory SARFIMA model are provided in the next section.

3 SARFIMA Long Memory Model

Long range dependency features can be identified by two different approaches
but equivalent forms given below defined in two distinct domains called time
and frequency (Bary [2]). In time domain, the auto correlation function ρX(.) of
the time series decays hyperbolically to zero. The correlation function, ρX(k) ≈
k2d−1 when k → ∞ and 0.0 < d < 0.5. The frequency domain, spectral density
function fX(.) is unbounded when the frequency is near zero, that is, fX(ω) ≈
ω−2d when ω → 0. A process {Yt}t∈Z is a stationary stochastic process given by
the formula,

φ(B)ψ(BS)∇d∇D
S (Yt − μ) = θ(B)Θ(BS)εt (1)

where μ is the mean of the process, {εt}t∈Z is a white noise process with zero
mean and variance σ2

ε . B is the backward shift operator such that yt−n = Bnyt

and s is the seasonal length. φ(B) and ψ(B) are the non seasonal and seasonal
autoregressive polynomials of order p and P respectively such that

φ(B) =
p∑

i=1

φiB
i 1 ≤ i ≤ p ψ(B) =

P∑

k=1

ψkBk 1 ≤ k ≤ P (2)

θ(B) and Θ(B) are the non-seasonal and seasonal moving average polynomials
of order q and Q respectively defined as

θ(B) =
q∑

j=1

θjB
j 1 ≤ j ≤ q Θ(B) =

Q∑

m=1

ΘmBm 1 ≤ m ≤ Q (3)

The differencing operator ∇d can be expressed as,

∇d = (1 − B)d =
∞∑

k=0

(
d

k

)
(−B)k (4)
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where
(

d
k

)
= Γ(1+d)

Γ(1+k)Γ(1+d−k) .

The seasonal operator ∇D
S can be expressed as,

∇D
S = (1 − BS)D =

∞∑

k=0

(
D

k

)
(−BS)k (5)

where
(
D
k

)
= Γ(1+D)

Γ(1+k)Γ(1+D−k) .

The model (1) is specified by SARFIMA(p, d, q)x(P,D,Q)S . When d = 0
and D = 0, the model is reduced to a classical seasonal SARFIMA model.
If conditions 0 < d < 0.5 and 0 < D < 0.5 are satisfied the process becomes
stationary. The spectral density function of the SARFIMA model can be written
as follows:

fS(λ) =
σ2

ε |θqe
(−iλ)|2|ΘQe(−iλ)S |2

2π|φpe(−iλ)|2|ψP e(−iλ)S |2 |1 − e−iλ|−2d|1 − e−iλS |−2D (6)

An unbounded spectral density around the origin assessed through the
utilization of (6) coupled with the hyperbolic decay of autocorrelation and partial
autocorrelation blended with seasonality features (as shown in Figs. 2, 3 and 4)
prompted towards parameter assessment being done using the exact maximum
likelihood estimation method. It was done by maximizing the log likelihood func-
tion numerically. The package arfima in R was used to calculate the maximum
likelihood estimators. Durbin-Levinson and Trench algorithms were utilized to
maximize the likelihood and obtain optimal simulation and forecasting results
(Veenstra and McLeod [39]).

4 Results of Monte Carlo Simulation

In order to evaluate the performance of the maximum likelihood method in esti-
mating the parameters of the model, a number of Monte Carlo experiments were
carried out. The simulation results provided non-seasonally and seasonally differ-
enced parameter estimations and the corresponding standard and mean square
errors (MSE) of the parameters. It was carried out based on 1000 replications
with different sizes of samples (n = 100, n = 200, n = 500 and n = 1000).
Seasonal length was considered as 52 corresponding to weekly rainfall. Monte
Carlo experiment was conducted on a simulated SARFIMA(0, d, 0)x(0,D, 0)52
series with following parameter combinations.

d = 0.1 and D = 0.45, d = 0.15 and D = 0.45, d = 0.3 and D = 0.3,
d = 0.45 and D = 0.10.

The simulation was carried out using the R programming Language (Ver-
sion 3.4.2) utilizing a HP11 (8 GB, 64 bit) computer. The standard errors of
the estimates SD(d̂), SD(D̂) and mean square error of the estimates MSE(d̂),
MSE(D̂) respectively such that:
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SD(d̂) =

√∑R

r=1
(d̂r − d̂)/R, SD(D̂) =

√√√√
R∑

r=1

(D̂r − D̂)/R,

MSE(d̂) =
R∑

r=1

(d̂r − d̂)2/R, MSE(D̂) =
R∑

r=1

(D̂r − D̂)2/R

Where d̂r and D̂r are the MLE of d and D for the rth replication. The value R
denotes the number of replications (R = 1000 for the simulation).

Tables 1, 2 3 and 4 present the average of the estimated d, corresponding
standard error and MSE of the estimator.

Table 1. MLE of d and D of a generating process of SARFIMA(0, d, 0)x(0, D, 0)52
with d = 0.1 and D = 0.45. The results are based on 1000 Monte Carlo replications

n d̂ SD(d̂) MSE(d̂) D̂ SD(D̂) MSE(D̂)

100 0.0333 0.0826 0.0112 0.4423 0.0160 0.0003

200 0.0674 0.0590 0.0045 0.4462 0.0112 0.0001

500 0.0860 0.0359 0.0014 0.4475 0.0091 0.00008

1000 0.0927 0.0297 0.0009 0.4503 0.0118 0.0001

Table 2. MLE of d and D of a generating process of SARFIMA(0, d, 0)x(0, D, 0)52
with d = 0.15 and D = 0.45. The results are based on 1000 Monte Carlo replications

n d̂ SD(d̂) MSE(d̂) D̂ SD(D̂) MSE(D̂)

100 0.0671 0.0835 0.0138 0.4502 0.0136 0.0001

200 0.1033 0.0570 0.0054 0.4539 0.0087 0.00009

500 0.1358 0.0357 0.0014 0.4530 0.0076 0.00006

1000 0.1429 0.0260 0.0007 0.4516 0.0070 0.00005

It can be seen from Tables 1, 2, 3 and 4 a reasonable assessment of the
maximum likelihood estimator for the seasonal as well as non-seasonal fractional
differencing parameters. It is noticeable that the parameter bias has decreased
as with the increase of the series length. Also, it is evident from the parameters
in Tables 1, 2, 3 and 4 that they become consistent with the increase in series
length. Standard deviation and the MSE of estimators decrease with the increase
in series length as expected.
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Table 3. MLE of d and D of a generating process of SARFIMA(0, d, 0)x(0, D, 0)52
with d = 0.3 and D = 0.3. The results are based on 1000 Monte Carlo replications

n d̂ SD(d̂) MSE(d̂) D̂ SD(D̂) MSE(D̂)

100 0.2236 0.0831 0.0127 0.2738 0.0690 0.0127

200 0.2607 0.0586 0.0049 0.2890 0.0386 0.0016

500 0.2846 0.0360 0.0015 0.2947 0.0260 0.0007

1000 0.2907 0.0262 0.0007 0.2978 0.0190 0.0003

Table 4. MLE of d and D of a generating process of SARFIMA(0, d, 0)x(0, D, 0)52
with d = 0.45 and D = 0.1. The results are based on 1000 Monte Carlo replications

n d̂ SD(d̂) MSE(d̂) D̂ SD(D̂) MSE(D̂)

100 0.3697 0.0733 0.0118 0.0205 0.1414 0.0263

200 0.4015 0.0493 0.0047 0.0723 0.0667 0.0052

500 0.4283 0.0312 0.0014 0.0902 0.0365 0.0014

1000 0.4391 0.0244 0.0007 0.0936 0.0268 0.0007

5 Application for Real Data

5.1 Description of Dataset

Colombo city is the commercial capital of Sri Lanka, situated with latitudes 6
55 N and Longitude 79 51 E and is chosen as the study site. Daily rainfall
data of Colombo were collected from 1990 to 2015 from the Department of
Meteorology, Sri Lanka for this study. The daily rainfall (mm) data has been
converted into weekly rainfall by dividing a year into 52 weeks such that week 1
corresponds to 1–7 January, Week 2 corresponds to 8–14 January and so on. The
data during the time span from 1990 to 2014 was used as to build the models
while the rest was used for the model validation.

5.2 Model Development

To examine the temporal variability of the rainfall series, time series plots was
taken and it is presented in Fig. 1.

Random behavior of the rainfall pattern can be clearly observed in Fig. 1.
However, it cannot be identified as a decreasing or increasing trend in weekly
rainfall within the considered time span. In order to find out the seasonal behav-
ior of the data, autocorrelation analysis was carried out and the result is pre-
sented in Figs. 2 and 3. A seasonal behavior can be clearly recognized from this
plot. Since the data was captured on a weekly basis, identifying the seasonal
length, ACF and PACF were done with 52 lag difference.
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Fig. 1. Time series plot of weekly rainfall series from 1990 to 2014

Based on the ACF and PACF it can be clearly identified that the seasonal
length is 52 since significant sample autocorrelation existed in the 52nd Lag.
Figure 5 illustrate the sample spectrum which has the peak at frequency very
closer to zero. The corresponding frequency gives a maximum spectrum density
of 0.0385185. This value is not far from zero. (0.0385185 * 100/0.5 = 0.0770
= 7.7%). Thus, we can conclude that the SARFIMA series is suitable for this
data set. The long term serial correlation in the data are accounted for in long
memory modeling. It is very imperative to consider the long memory features
to capture the real dynamics of rainfall. Thus, several SARFIMA models were
fitted to the data with the size of the sample being 1300. Those fitted were uti-
lized to predict the weekly rainfall over the year 2015. The best fitted model is
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Fig. 2. Autocorrelation plot of the series from 1990 to 2014

selected with minimum mean absolute error (MAE). The MAE can be written
as;

MAE = 1
n

∑n
i=1 |ei|.

Where ei is the forecasting error and n is the length of the forecasting series.
The corresponding result of the fitted long memory model is as follows.
A model SARFIMA (1, 0.116, 1)×(1, 0.171, 0)52 was found to be the best fitted
model for the weekly rainfall series. The corresponding parameter estimates with
standard errors are presented in Table 5.
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Fig. 3. Partial autocorrelation plot of the series from 1990 to 2014

Table 5. Fitted model for the weekly rainfall series SARFIMA(p, d, q)x(P, D, Q)S
with p = 1, q = 1, d = 0.1156735, P = 1, D = 0.1707546, Q = 0 and S = 52

Coefficients φ1 θ1 ψ1 Constant d D

Estimate −0.9113 −0.9018 −0.0860 0.0041 0.1156 0.1707

Standard Error 0.1427 0.1498 0.0394 0.1021 0.0269 0.0291

Z-value −6.3854 −6.0192 −2.1796 0.0401 4.2900 5.8644

Pr(>|Z|) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Fig. 4. ACF of the series from 1990 to 2014 with 52 Lag

All model parameters are significant at the 0.05 level of significance. The
residual analysis of the fitted model was performed and found the uncorrelated
at a 5% level of significance. Furthermore, the model was tested for weekly
rainfall data in 2015 and the result is presented in Table 6. Various SARIMA
models also fitted to the same dataset for the purpose of the comparison with
the long memory model SARFIMA. A model SARIMA(1, 0, 0)x(1, 0, 1)52 was
found to be the best fitted model for the weekly rainfall series.

Table 6. Absolute Forecasting Error in mm for independent sample 2015

Absolute Forecasting
Error in mm

SARIMA weekly
percentage

SARFIMA weekly
percentage

0–10 7(13.5) 12(23.1)

11–15 5(9.6) 4(7.7)

16–20 3(5.8) 4(7.7)

21–25 4(7.7) 5(9.6)

26–30 2(3.8) 6(11.5)

31–35 7(13.5) 4(7.7)

36–40 8(15.4) 3(5.8)

41–45 4(7.7) 1(1.9)

46–50 1(1.9) 3(5.8)

More than 50 11(21.1) 10(19.2)

Based on the above forecasted result, the model SARFIMA is outperform
SARIMA. It can be seen that the more than 30% of the weeks’ forecasting error
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Fig. 5. The periodogram of the rainfall series from 1990 to 2014

less than to 15 mm indicated that a good agreement of the real and forecasted
which derived from the SARFIMA. Then the novel model can be considered
as best fitted for the weekly rainfall series. However, still there is a consider-
able number of weeks’ forecasting error more than to 50 mm which need further
improvement to this model.

6 Conclusion

It is evident from the results of this paper that long range dependency character-
istics could couple with periodic variation in a weekly rainfall series. SARFIMA
model can be considered to capture both long memory and seasonality. The
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Monte Carlo simulation provides evidence towards optimal accuracy of parame-
ter estimation. Furthermore, accuracy of the estimators improved with increasing
of the series length. The effectiveness of the SARFIMA model was represented
by using real datasets in the form of weekly rainfall from 1990 to 2014 (1300
size of the sample). SARFIMA (1, 0.116, 1) × (1, 0.171, 0)52 model was found
to be the best model to forecast weekly rainfall in Colombo city. Thereafter,
model was used to make independent sample long-range seasonal predictions
of the weekly rainfall for the year 2015. Those result was compared with the
SARIMA(1, 0, 1)x(1, 0, 1)52 and found that the SARFIMA is superior than the
SARIMA based on the predicted performance which has done for the indepen-
dent data set.
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