
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=gscs20

Journal of Statistical Computation and Simulation

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/gscs20

Comparison of standard long memory time series

H. P. T. N. Silva, G. S. Dissanayake & T. S. G. Peiris

To cite this article: H. P. T. N. Silva, G. S. Dissanayake & T. S. G. Peiris (22 Nov 2023):
Comparison of standard long memory time series, Journal of Statistical Computation and
Simulation, DOI: 10.1080/00949655.2023.2280804

To link to this article:  https://doi.org/10.1080/00949655.2023.2280804

Published online: 22 Nov 2023.

Submit your article to this journal 

Article views: 7

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=gscs20
https://www.tandfonline.com/loi/gscs20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00949655.2023.2280804
https://doi.org/10.1080/00949655.2023.2280804
https://www.tandfonline.com/action/authorSubmission?journalCode=gscs20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=gscs20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00949655.2023.2280804
https://www.tandfonline.com/doi/mlt/10.1080/00949655.2023.2280804
http://crossmark.crossref.org/dialog/?doi=10.1080/00949655.2023.2280804&domain=pdf&date_stamp=22 Nov 2023
http://crossmark.crossref.org/dialog/?doi=10.1080/00949655.2023.2280804&domain=pdf&date_stamp=22 Nov 2023


JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION
https://doi.org/10.1080/00949655.2023.2280804

Comparison of standard longmemory time series

H. P. T. N. Silvaa, G. S. Dissanayakeb and T. S. G. Peirisc

aDepartment of Social Statistics, Faculty of Humanities and Social Science, University of Sri Jayewardenepura,
Sri Jayewardenepura, Sri Lanka; bNew South Wales Ministry of Health and School of Mathematics and
Statistics, University of Sydney, Sydney, Australia; cDepartment of Mathematics and Statistics, SLIIT, Malabe,
Sri Lanka

ABSTRACT
Standard long memory models are in abundance in the literature
today. Selecting the best such amodel in terms of capturing key req-
uisite features and trends in data becomes a challenge. This paper
addresses the issue through a sequence of Monte Carlo experiments
on simulated data and introduces an interval estimate on the asymp-
totic variance for the long-rangedependenceparameter of the entire
family of standard long memory time series considered within the
scope of the study.
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1. Introduction

Time seriesmodels have been developedwith an increasing degree of accuracy over the last
fewdecades. The shortmemory autoregressivemoving average (ARMA)model introduced
byBox and Jenkins [1] has been extensively used for a variety of applications. Recently, time
series models with long memory features have become very popular among researchers
in many fields such as statistics and econometrics. Features of a fractionally integrated
autoregressive moving average (ARFIMA) long memory model were initially introduced
by Granger and Joyeux [2] and Hosking [3]. It was an extension of the traditional ARMA
process with a fractional differencing parameter as opposed to a autoregressive integrated
moving average (ARIMA) series with a non-fractional differencing value. The hyperbolic
decay of the autocorrelation function and an unbounded spectral density are two key
features of the ARFIMA process. A number of estimation methods of the fractional dif-
ferencing parameter were proposed by Porter-Hudak and Geweke [4], Fox and Taqqu [5],
Dahlhaus [6], Sowell [7], Chen et al. [8] and Robinson [9]. Comparison study assessments
were done by Cheung and Diebold [10] on maximum likelihood estimators for fraction-
ally differenced parameters using two types of maximum likelihood (ML) estimators in
the form of frequency-domain ML and exact domain ML of time series processes with
an unknown mean. Small sample properties of four ML estimators of the ARFIMAmodel
were investigated through aMonte Carlo simulation byHauser [11]. A study done byWang
et al. [12] evaluated the ability of detecting existence of long-memory in time series using
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fourmethods: Lo’smodified rescale adjusted range test, Geweke and PorterHudak test and
two other approximate maximum likelihood estimation methods. Some of the research
done by Chan and Palma [13], Palma [14] and Beran et al. [15] carried out an assessment
of ARFIMA model parameters and their properties. Dissanayake [16] introduced a rapid
lag order detectionmechanism of the standard longmemory ARFIMA process. Due to the
practical success of the ARFIMA model, a more generalized fractionally differenced long
memory time series model called the Gegenbauer ARMA (GARMA) was probed in detail
by Gray et al. [17]. Chung [18] extended the work in introducing a grid-based parameter
estimation procedure of an elementary GARMA process. Fresh interest in the economet-
ric community infused into the process the introduction of a new class of models with
heteroskedasticity in Dissanayake and Peiris [19]. It was followed by the casting of the
process driven by Gaussian white noise in state space by Dissanayake et al. [20] to estab-
lish a parameter estimation based on optimal lag order validated by predictive accuracy. A
similar experiment in which the process was driven by Generalized Autoregressive Condi-
tionally heteroskedastic (GARCH) errors (instead of Gaussian white noise) was presented
in Dissanayake et al. [21] with the validation of parameter estimation based on optimal
lag order done through log-likelihood measures. A concise summary of fractionally dif-
ferenced Gegenbauer processes with long memory was provided in Dissanayake [22]. An
extensive review of fractionally differenced Gegenbauer processes with long memory is
found in Dissanayake et al. [23]. It refers to certain conceptual paradigms presented in the
survey on longmemory byGuegan [24] inwhich an extended k-factor Gegenbauer process
becomes the highlight of rigour. Though the ARFIMAmodel was able to capture the long-
range dependency, it does not take into account the seasonal variation patterns present in
some of the real data sets. The seasonal autoregressive fractionally integratedmoving aver-
age (SARFIMA) of Porter-Hudak [25] is a natural extension of the ARFIMA process with
an additional seasonal filter. Themodel consists of longmemory dependency features with
periodic behaviour in terms of the data. Very few attempts have been made to study rain-
fall behaviour in the context of long memory and seasonality. A study done by Yaya and
Fashae [26]made an attempt to fit SARFIMAmodels for rainfall data in six rainfall zones of
Nigeria. However, they could not find significant SARFIMAmodels which can capture the
seasonal behaviour with the long-range dependency of the real data. Comparative assess-
ment of time seriesmodels that captureweekly rainfall in an emergingAsian economy such
as Sri Lanka is seemingly absent in the current literature and becomes the core contribu-
tion of this article. Theoretical preliminaries linked with all such long memory models are
provided in the next section. The outline of this paper is as follows. Section 2 presents theo-
retical notation and preliminaries related toARFIMAand SARFIMA longmemorymodels
presented in this article. It is followed by Section 3 with a brief emphasis on methodology.
Section 4 presents results of the research endeavour that are comparatively assessed in the
discussion of Section 5. Finally, Section 6 provides some concluding remarks.

2. Notation and preliminaries

Long-range dependency features can be identified using two different approaches by
employing equivalent forms (given below) defined in two distinct domains called time and
frequency (Bary [27]). In time domain, the autocorrelation functionρX(.) of the time series
decays hyperbolically to zero. The correlation function, ρX(k) ≈ k2d−1 when k → ∞ and
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0.0<d<0.5. The frequency domain, spectral density function fX(.) is unbounded when
the frequency is near zero, that is, fX(ω) ≈ ω−2d when ω → 0. Therefore {Yt}t∈Z is a sta-
tionary stochastic process with a fractional differencing parameter d such that 0<d<0.5
that defines an ARFIMA time series of the form:

φ(B)∇d(Yt − μ) = θ(B)εt (1)

Adding seasonal polynomials and a seasonal filter to (1) creates the formula of a SARFIMA
process as follows:

φ(B)ψ(BS)∇d∇D
S (Yt − μ) = θ(B)�(B)Sεt (2)

Where μ is the mean of the process, {εt}t∈Z is a white noise process with zero mean and
variance σ 2

ε . B is the backward shift operator such that yt−n = Bnyt and s is the seasonal
length. φ(B) and ψ(B) are the non seasonal ad seasonal autoregressive polynomials of
order p and P respectively such that

φ(B) =
p∑

i=1
φiBi1 ≤ i ≤ pψ(B) =

P∑
k=1

ψkBk1 ≤ k ≤ P (3)

θ(B) and�(B) are the non-seasonal and seasonal moving average polynomials of order q
and Q respectively defined as

θ(B) =
q∑

j=1
θjBj1 ≤ j ≤ q�(B) =

Q∑
m=1

�mBm1 ≤ m ≤ Q (4)

The differencing operator ∇d can be expressed as,

∇d = (1 − B)d =
∞∑
k=0

(
d
k

)
(−B)k (5)

Where
(d
k
) = 
(1+d)


(1+k)
(1+d−k) .
The seasonal operator ∇D

S can be expressed as,

∇D
S = (1 − BS)D =

∞∑
k=0

(
D
k

)
(−BS)k (6)

Where
(D
k
) = 
(1+D)


(1+k)
(1+D−k) .
The model (2) is specified by SARFIMA(p, d, q)x(P,D,Q)S. When d = 0 and D = 0,

the model is reduced to a classical seasonal SARFIMA model. If conditions 0<d<0.5
and 0<D<0.5 are satisfied the process becomes stationary.

If the process in (1) is driven by GARCH errors instead of zero white noise the process
could be defined as:

φ(B)∇d(Yt − μ) = θ(B)Zt , (7)

with GARCH(p,q) errors to model the conditional heteroscedasticity. That is, Zt|Ft−1 ∼
N(0, h2t ), where Ft−1 is the history of the process and h2t satisfies the GARCH(r,s) process
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given by

h2t = α0 +
p∑

j=1
αjZ2

t−j +
q∑

j=1
βjh2t−j (8)

The original process generated by (1) and could now be introduced with GARCH(r,s)
errors as a ARFIMA(p, d, q)-GARCH(r, s) process created as a result of generalized frac-
tional differencing coupled with conditional heteroskedasticity.

Similar to transforming model (1) into model (7), model (2) could be modified by
changing white noise into GARCH errors as:

φ(B)ψ(BS)∇d∇D
S (Yt − μ) = θ(B)�(B)SZt (9)

It will be a SARFIMA(p, d,D, q)-GARCH(r, s) process created as a result of generalized
fractional differencing of a SARFIMA time series coupled with conditional heteroskedas-
ticity.

3. Methodology

In the past, parameter estimation of long memory time series models presented in the
preceding section was done using state space modelling coupled with the Kalman Filter.

The state space model is comprised of a system of two equations known as the
‘measurement(observation)equation’, and the ‘transient(state)equation’. The two equa-
tions could be constructed for any linear dynamic system created through the processes
introduced in the previous section driven by Gaussian errors.

The resulting output of the state space configuration was thereafter filtered through
a recursive algorithm known as the Kalman filter to arrive at parameter estimates of a
Monte Carlo experiment. It was done for varying parameter initial values, series lengths
and iterations.

Technical details of the state-spaced modelling-based Monte Carlo exercise are not dis-
cussed in this section, since they are already available for reference in the current existing
body of knowledge. Especially Hagiwara [28] presents the theoretical concepts blended
with practical applications of traditional state space modelling and the work has been
logically dissected in an evaluation done inDissanayake [29]. Furthermore,Hartl and Juck-
newitz [30] propose a new approximation in terms of state space modelling of unobserved
fractional components. Therefore it is evident that a comparative assessment of longmem-
ory models evaluated utilizing the classical maximum likelihood functions as opposed to
state space modelling lacks depth in the literature.

In such a context, traditional maximum likelihood functions were employed to generate
Monte Carlo estimates based on simulated data for the time series models presented in the
preceding section. For the stationary, zero-meanARFIMAmodel driven byGaussianwhite
noise the log-likelihood function is given by

L(θ) = −1
2
log det(
θ )− 1

2
y′
−1

θ y (10)

The ARFIMA (0,d,0) maximum likelihood estimates of the parameters were obtained
by maximizing Equation (10) in which y = (y1, y2, y3, . . . , yn) and 
θ is the variance-
covariance matrix of {Yt}t∈Z and θ being the parameter vector.
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The stationary, zero-mean,Gaussianwhite noise-driven SARFIMA log-likelihood func-
tion is similar to (10) with a different variant-covariant matrix.

Maximum likelihood estimates for parameters λ of an ARFIMA-GARCH time series
model were obtained by maximizing the conditional log-likelihood lt of the form:

L(λ) = 1
n

n∑
t=1

ltlt = −1
2
ln ht − ε2t

2ht
(11)

Where λ = (γ T , δT)T , γ = (ψ1,ψ2, . . . ,ψp, θ1, θ2, . . . , θq, d)T and δ = (α0,α1,α2, . . . ,αr,
β1,β2, . . . ,βs)T .

Maximum likelihood estimates of a SARFIMA-GARCH time series model were
obtained by maximizing a conditional log likelihood function similar to (11) with a
different set of parameters.

The simulation results of the Monte Carlo experiment that comes under the purview of
this paper using Equations (10) and (11) as well as their close variants are presented in the
next section. It is followed by the derivation of an estimate for the asymptotic variance of
the long memory parameter in terms of the models being assessed within the scope of this
article. The derivation also becomes a segment of the next section.

4. Results – monte carlo evidence

In order to evaluate the performance of the maximum likelihood method in estimating
the parameters of the model, a number of Monte Carlo experiments were carried out. The
simulation results provided for non-seasonally and seasonally differenced parameter esti-
mations, the corresponding standard errors (SE), and mean square errors (MSE) of the
parameters. It was carried out based on 1000 replications with different sizes of samples
(n = 100, n = 200, n = 500 and n = 1000). Seasonal length was considered as 52 weeks
corresponding to weekly rainfall per year. Monte Carlo results provided in this section
based on rainfall data in Sri Lanka extend and corroborate the work of Silva et al. [31] and
Silva et al. [32].

Results fromMonte Carlo experiments are given below. For convenience and less com-
plexity ARFIMA(0,d,0), ARFIMA(0,d,0)-GARCH(1,1), SARFIMA(0,d,0)x(0,D,0), and
SARFIMA(0,d,0)x(0,D,0)-GARCH(1,1) models were chosen for the experiments. The
irregular random variation noise innovations of the ARFIMA model illustrated in Table 1
were changed from Gaussian white noise to GARCH errors that lead towards the simula-
tion results of Tables 2–5 below.

Initially, by inspecting the standard error values of d in Tables 1–13 below, the smallest
(0.0244) and largest (0.10273) estimates are chosen for the analysis to arrive at an estimate
for the asymptotic variance of the long memory parameter d. Thereafter, corresponding
variances (0.000595 and 0.010553) were calculated. It is followed by finding the interval
comprising lower and upper bounds in which the largest and smallest calculated asymp-
totic variance values would lie as factors in terms of corresponding series length (n) and
π2. It is an interesting exposition in standard long memory time series research due to the
incorporation of a seasonal filter in some models presented in this article. Furthermore,
certain models within the scope of this article were driven by white noise and others by
GARCHerrors. Therefore the derived asymptotic variance interval estimate of d represents
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Table 1. Result for exactmaximum likelihood estimator of d for a generating process of ARFIMA(0, d, 0).

d N d̂ SE(d̂) MSE(d̂)

0.1 100 0.05175 0.09127 0.01066
200 0.07485 0.06268 0.00456
500 0.08856 0.03679 0.00148
1000 0.09499 0.02546 0.00067

0.15 100 0.10487 0.09158 0.01042
200 0.12658 0.05936 0.00407
500 0.14084 0.03680 0.00144
1000 0.14560 0.02541 0.00067

0.3 100 0.24931 0.08773 0.01027
200 0.27264 0.05750 0.00405
500 0.28922 0.03624 0.00143
1000 0.29474 0.02518 0.00067

0.45 100 0.37742 0.06959 0.01011
200 0.40795 0.04772 0.00405
500 0.43103 0.03142 0.00135
1000 0.44359 0.02707 0.00077

Table 2. The MLE of d, α0, α1 and β1 of a generating process of ARFIMA (0,d,0)-GARCH(1,1) with α0 =
0.15, α1 = 0.2, β1 = 0.6 and d = 0.1.

n 100 200 500 1000

d̂ 0.07505 0.08082 0.08952 0.09515
SE(d̂) 0.07783 0.06094 0.04054 0.02700
MSE(d̂) 0.00668 0.00408 0.00175 0.00075
α̂0 0.07094 0.10044 0.13805 0.15129
SE(α̂0) 0.11041 0.11266 0.08602 0.05281
MSE(α̂0) 0.01844 0.01515 0.00754 0.00279
α̂1 0.11152 0.14204 0.17934 0.19368
SE(α̂1) 0.15044 0.13060 0.08878 0.05363
MSE(α̂1) 0.03046 0.02041 0.00831 0.00292
β̂1 0.80155 0.72727 0.63664 0.60262
SE(β̂1) 0.25925 0.25851 0.18672 0.11003
MSE(β̂1) 0.10783 0.08303 0.03621 0.01211

Table 3. The MLE of d, α0, α1 and β1 of a generating process of ARFIMA (0,d,0) – GARCH(1,1) with α0 =
0.15, α1 = 0.2, β1 = 0.6 and d = 0.15.

n 100 200 500 1000

d̂ 0.11464 0.12679 0.13967 0.14532
SE(d̂) 0.08943 0.06719 0.04076 0.02699
MSE(d̂) 0.00925 0.00505 0.00177 0.00075
α̂0 0.07373 0.10263 0.13947 0.15182
SE(α̂0) 0.11536 0.11276 0.08426 0.05165
MSE(α̂0) 0.01913 0.01496 0.00721 0.00267
α̂1 0.11405 0.14460 0.18109 0.19436
SE(α̂1) 0.15295 0.13012 0.08719 0.05214
MSE(α̂1) 0.03078 0.02000 0.00796 0.00275
β̂1 0.79587 0.72149 0.63318 0.60122
SE(β̂1) 0.26576 0.25888 0.18252 0.10656
MSE(β̂1) 0.10899 0.08178 0.11619 0.12755

all such models. Therefore by inspecting the standard deviation of the estimated standard
long memory parameter (d) in Tables 1–13, it is clearly evident that the asymptotic vari-
ance for all the estimates of d fall within the interval

(
π2

17n ,
π2

9n

)
, where n is equal to the
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Table 4. The MLE of d, α0, α1 and β1 of a generating process of ARFIMA (0,d,0) – GARCH(1,1) with α0 =
0.15, α1 = 0.2, β1 = 0.6 and d = 0.3.

n 100 200 500 1000

d̂ 0.26080 0.27842 0.29125 0.29612
SE(d̂) 0.10273 0.06993 0.04059 0.02709
MSE(d̂) 0.01209 0.00536 0.00172 0.00075
α̂0 0.07279 0.10395 0.14538 0.15580
SE(α̂0) 0.11401 0.11185 0.08353 0.04915
MSE(α̂0) 0.01896 0.01463 0.00700 0.00245
α̂1 0.11525 0.14725 0.18548 0.19766
SE(α̂1) 0.15669 0.12942 0.08246 0.04560
MSE(α̂1) 0.03173 0.01953 0.00701 0.00209
β̂1 0.79651 0.71849 0.62025 0.59233
SE(β̂1) 0.26847 0.25394 0.17527 0.09419
MSE(β̂1) 0.11069 0.07853 0.03113 0.00893

Table 5. The MLE of d, α0, α1 and β1 of a generating process of ARFIMA (0,d,0) – GARCH(1,1) with α0 =
0.15, α1 = 0.2, β1 = 0.6 and d = 0.45.

n 100 200 500 1000

d̂ 0.40720 0.42797 0.44289 0.44770
SE(d̂) 0.08894 0.05994 0.03755 0.02646
MSE(d̂) 0.00974 0.00408 0.00146 0.00071
α̂0 0.07601 0.12041 0.14941 0.15630
SE(α̂0) 0.11293 0.11916 0.08161 0.04862
MSE(α̂0) 0.01823 0.01507 0.00666 0.00240
α̂1 0.12065 0.15949 0.18873 0.19784
SE(α̂1) 0.15684 0.12548 0.07863 0.04476
MSE(α̂1) 0.03090 0.01739 0.00631 0.00201
β̂1 0.78589 0.68169 0.61120 0.59154
SE(β̂1) 0.26907 0.25938 0.16700 0.09219
MSE(β̂1) 0.10696 0.07395 0.02835 0.00857

Table 6. MLE of d and D of a generating process of SARFIMA(0, d, 0)x(0,D, 0)52 with d = 0.1 and
D = 0.45.

n d̂ SD(d̂) MSE(d̂) D̂ SD(D̂) MSE(D̂)

100 0.0333 0.0826 0.0112 0.4423 0.0160 0.0003
200 0.0674 0.0590 0.0045 0.4462 0.0112 0.0001
500 0.0860 0.0359 0.0014 0.4475 0.0091 0.00008
1000 0.0927 0.0297 0.0009 0.4503 0.0118 0.0001

length of the simulated time series (n = 1000 for the lower bound and n = 100 for the
upper bound of interval estimate). The given interval estimate for the asymptotic variance
of d is for a family of standard long memory time series, and differs from the concept of
a point estimate provided for the asymptotic variance of d in a specific generalized long
memory model given in Dissanayake et al. [20]. It is yet another novel contribution of this
article.
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Table 7. MLE of d and D of a generating process of SARFIMA(0, d, 0)x(0,D, 0)52 with d = 0.15 and
D = 0.45.

n d̂ SD(d̂) MSE(d̂) D̂ SD(D̂) MSE(D̂)

100 0.0671 0.0835 0.0138 0.4502 0.0136 0.0001
200 0.1033 0.0570 0.0054 0.4539 0.0087 0.00009
500 0.1358 0.0357 0.0014 0.4530 0.0076 0.00006
1000 0.1429 0.0260 0.0007 0.4516 0.0070 0.00005

Table 8. MLE of d and D of a generating process of SARFIMA(0, d, 0)x(0,D, 0)52 with d = 0.3 and
D = 0.3.

n d̂ SD(d̂) MSE(d̂) D̂ SD(D̂) MSE(D̂)

100 0.2236 0.0831 0.0127 0.2738 0.0690 0.0127
200 0.2607 0.0586 0.0049 0.2890 0.0386 0.0016
500 0.2846 0.0360 0.0015 0.2947 0.0260 0.0007
1000 0.2907 0.0262 0.0007 0.2978 0.0190 0.0003

Table 9. MLE of d and D of a generating process of SARFIMA(0, d, 0)x(0,D, 0)52 with d = 0.45 and
D = 0.1.

n d̂ SD(d̂) MSE(d̂) D̂ SD(D̂) MSE(D̂)

100 0.3697 0.0733 0.0118 0.0205 0.1414 0.0263
200 0.4015 0.0493 0.0047 0.0723 0.0667 0.0052
500 0.4283 0.0312 0.0014 0.0902 0.0365 0.0014
1000 0.4391 0.0244 0.0007 0.0936 0.0268 0.0007

Table 10. The MLE of D, d, α0, α1 and β1 of a generating process of SARFIMA(0, d, 0)x(0,D, 0)-
GARCH(1,1) with α0 = 0.15, α1 = 0.2, β1 = 0.6 and d = 0.1 and D = 0.45.

n 100 200 500 1000

d̂ 0.01467 0.05484 0.0843 0.09292
SE(d̂) 0.08838 0.06595 0.04484 0.03621
MSE(d̂) 0.01509 0.00639 0.00226 0.00136
D̂ 0.45352 0.45605 0.45416 0.45195
SE(D̂) 0.01822 0.01225 0.00983 0.00946
MSE(D̂) 0.00034 0.00019 0.00011 0.00009
α̂0 0.18195 0.22167 0.1819 0.16081
SE(α̂0) 0.18514 0.16380 0.09834 0.05415
MSE(α̂0) 0.03530 0.03197 0.01069 0.00305
α̂1 0.07455 0.12917 0.16441 0.17743
SE(α̂1) 0.10350 0.08670 0.06012 0.04205
MSE(α̂1) 0.02645 0.01253 0.00489 0.00228
β̂1 0.68152 0.56483 0.58804 0.60484
SE(β̂1) 0.29227 0.26419 0.16632 0.09476
MSE(β̂1) 0.09207 0.07103 0.0278 0.00900

5. Discussion

From the simulation results provided in Tables 1–13 for similar long memory parameter
values of ARFIMA(0,d,0), ARFIMA(0,d,0)-GARCH(1,1), SARFIMA(0,d,0)x(0,D,0), and
SARFIMA(0,d,0)x(0,D,0)-GARCH(1,1) models the ones driven by white noise capture
long range dependence better than the heteroskedastic series with GARCH errors. It is
evident from the fact that ARFIMA(0,d,0) and SARFIMA(0,d,0)x(0,D,0) models return
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Table 11. The MLE of D, d, α0, α1 and β1 of a generating process of SARFIMA(0, d, 0)x(0,D, 0)-
GARCH(1,1) with α0 = 0.15, α1 = 0.2, β1 = 0.6 and d = 0.15 and D = 0.45.

n 100 200 500 1000

d̂ 0.06048 0.10293 0.13361 0.14238
SE(d̂) 0.08897 0.06597 0.04649 0.03320
MSE(d̂) 0.01593 0.00657 0.00243 0.00116
D̂ 0.45308 0.45579 0.45375 0.45202
SE(D̂) 0.01843 0.01234 0.00988 0.00914
MSE(D̂) 0.00035 0.00019 0.00011 0.00008
α̂0 0.18121 0.22116 0.18212 0.16279
SE(α̂0) 0.18684 0.16349 0.09808 0.05617
MSE(α̂0) 0.03588 0.03179 0.01065 0.00332
α̂1 0.07384 0.12846 0.16441 0.17651
SE(α̂1) 0.10309 0.08673 0.06031 0.04232
MSE(α̂1) 0.02654 0.01264 0.0049 0.00234
β̂1 0.6848 0.56624 0.5878 0.60321
SE(β̂1) 0.29133 0.26447 0.16619 0.09872
MSE(β̂1) 0.09206 0.07109 0.02777 0.00976

Table 12. The MLE of D, d, α0, α1 and β1 of a generating process of SARFIMA(0, d, 0)x(0,D, 0)-
GARCH(1,1) with α0 = 0.15, α1 = 0.2, β1 = 0.6 and d = 0.3 and D = 0.3.

n 100 200 500 1000

d̂ 0.22345 0.25789 0.28404 0.29191
SE(d̂) 0.09362 0.06618 0.04542 0.03169
MSE(d̂) 0.01463 0.00615 0.00232 0.00107
D̂ 0.27587 0.29134 0.29554 0.29794
SE(D̂) 0.07678 0.04156 0.02733 0.01963
MSE(D̂) 0.00648 0.0018 0.00077 0.00039
α̂0 0.1966 0.20161 0.17253 0.16032
SE(α̂0) 0.18468 0.14769 0.08641 0.05143
MSE(α̂0) 0.03628 0.02448 0.00798 0.00275
α̂1 0.12848 0.15819 0.18011 0.18738
SE(α̂1) 0.12329 0.09166 0.06233 0.04201
MSE(α̂1) 0.02032 0.01015 0.00428 0.00192
β̂1 0.60489 0.56268 0.58478 0.59574
SE(β̂1) 0.31005 0.24688 0.15138 0.09276
MSE(β̂1) 0.09615 0.06234 0.02315 0.00862

smaller standard errors for the long memory parameter d on 63 of the 64 simulation
results. Furthermore, the SARFIMA(0,d,0)x(0,D,0) model captures seasonality better than
the ARFIMA(0,d,0) series as per the results of Tables 1–13. The results linked with the long
memory parameter in Tables 1–13 provides adequate information to arrive at an inter-
val estimate for the asymptotic variance of d across all considered standard long memory
models within the scope of the study.

6. Conclusion

Based on the discussion in the preceding section it can be clearly established that the
SARFIMA(0,d,0)x(0,D,0) series is the best model in terms of capturing both the features of
seasonality and long-range dependence through Monte Carlo experiments run with sim-
ulated data. Comparing the results inclusive of the asymptotic variance interval estimate
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Table 13. The MLE of D, d, α0, α1 and β1 of a generating process of SARFIMA(0, d, 0)x(0,D, 0)-
GARCH(1,1) with α0 = 0.15, α1 = 0.2, β1 = 0.6 and d = 0.45 and D = 0.1.

n 100 200 500 1000

d̂ 0.36677 0.39857 0.426 0.43861
SE(d̂) 0.08139 0.05613 0.03725 0.02884
MSE(d̂) 0.01356 0.0058 0.00196 0.00096
D̂ 0.02071 0.07194 0.09022 0.09427
SE(D̂) 0.14222 0.06721 0.03566 0.02765
MSE(D̂) 0.02652 0.0053 0.00137 0.0008
α̂0 0.18613 0.18885 0.16614 0.15776
SE(α̂0) 0.15882 0.13244 0.07836 0.04814
MSE(α̂0) 0.02653 0.01905 0.0064 0.00238
α̂1 0.17649 0.1903 0.19467 0.19621
SE(α̂1) 0.13421 0.09716 0.06178 0.042
MSE(α̂1) 0.01857 0.00953 0.00384 0.00178
β̂1 0.56087 0.54565 0.57909 0.59065
SE(β̂1) 0.29032 0.23251 0.1397 0.0877
MSE(β̂1) 0.08582 0.05701 0.01995 0.00778

of the standard long memory parameter with other similar time series metrics will be a
worthwhile research endeavour for the future.
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