The study of estimating the parameters of a mixture of two exponential components

by

S. D. L. Geeganage.

This thesis is submitted in partial fulfillment of the requirements for the Degree of Master of Philosophy of the Faculty of Applied Science, University of Sri Jayawardenepura, Nugegoda, Sri Lanka.

December, 1997
Registration Number : 16923

147494
ABSTRACT

The problem of estimating parameters of finite mixtures, is one of the oldest estimation problems. Due to the lack of a completely satisfactory solution, this problem still attracts a great deal of attention. Other than the mixtures of normal components, the most widely used mixture distributions are the mixtures of exponential components. The simplest is the mixture of two exponential components whose probability density function is given by,

\[
f(x) = p\lambda_1 e^{-\lambda_1 x} + (1-p)\lambda_2 e^{-\lambda_2 x} \quad ; \quad x > 0
\]

\[= 0 \quad ; \quad \text{otherwise}
\]

for \(\lambda_1, \lambda_2 > 0\) and \(0 < p < 1\).

Mixtures of this type are frequently applied in life statistics and failure data. In this thesis, the problem of estimating parameters of a mixture of two exponential components is studied.

Our first effort, the use of the method of moments, did not give us satisfactory solutions. The simulation study has shown that the resulting estimates deviated drastically from the actual parameters. Next, the method of maximum likelihood
CONTENTS

Abstract
Acknowledgement
List of tables
List of figures
Chapter 1 Introduction
 1.1 Mixture distributions
 1.1.1 Estimating parameters of mixture distributions
 1.2 Mixtures of exponential distributions
 1.3 Aims and Objectives
 1.4 Methodology

Chapter 2 Estimation using the method of moments
 2.1 Introduction
 2.2 Method of moments and moment estimators
 2.3 Application of the method of moments to an exponential mixture
 2.4 Moment estimates using numerical methods
 2.5 Starting values (Initial guesses)
 2.6 Simulation study
 2.7 Results
 2.8 Conclusions
Chapter 3 Estimation using the method of maximum likelihood

3.1 Introduction 29

3.2 The method of maximum likelihood 33

3.3 Maximum likelihood estimates of a mixture of two exponential components 35

3.4 A relationship between the estimates of the parameters of an exponential mixture 37

3.5 Optimization techniques 39

3.5.1 Nelder and Mead's method 42

3.5.1(a) Minimization of -log likelihood function using Nelder and Mead's method 45

3.5.2 Newton-Raphson method 47

3.5.2(a) Solving the normal equations using Newton-Raphson method 49

3.5.3 Sequential Unconstrained Minimization Technique (SUMT) 50

3.5.3(a) Solving the normal equations using SUMT 52

3.6 Starting points (Initial guesses) 55

3.6.1 Method 1 57

3.6.2 Method 2 60

3.7 Simulation study 66

3.8 Simulation results 68

3.9 Conclusions 75
Chapter 4 Applications of exponential mixtures

4.1 Introduction

4.2 Survival periods of cancer patients

4.2.1 Analysis of the mixtures of survival periods

4.2.2 Results

4.3 Life assurance schemes

4.4 Exponential mixtures in marketing field

4.5 Conclusions

Chapter 5 Conclusions and Discussion

Appendices

Appendix I(a)

Appendix I(b)

Appendix II

Appendix III

References