The study of estimating the parameters of a mixture of two exponential components

by

S. D. L. Geeganage.

This thesis is submitted in partial fulfillment of the requirements for the Degree of Master of Philosophy of the Faculty of Applied Science, University of Sri Jayawardenepura, Nugegoda, Sri Lanka.

December, 1997 Registration Number : 16923

147494

ABSTRACT

The problem of estimating parameters of finite mixtures, is one of the oldest estimation problems. Due to the lack of a completely satisfactory solution, this problem still attracts a great deal of attention. Other than the mixtures of normal components, the most widely used mixture distributions are the mixtures of exponential components. The simplest is the mixture of two exponential components whose probability density function is given by,

$$f(x) = p\lambda_1 e^{-\lambda_1 x} + (1-p)\lambda_2 e^{-\lambda_2 x} ; x > 0$$

= 0 ; otherwise

for λ_1 , $\lambda_2 > 0$ and 0 .

Mixtures of this type are frequently applied in life statistics and failure data. In this thesis, the problem of estimating parameters of a mixture of two exponential components is studied.

Our first effort, the use of the method of moments, did not give us satisfactory solutions. The simulation study has shown that the resulting estimates deviated drastically from the actual parameters. Next, the method of maximum likelihood

CONTENTS

AUStract

Acknowledgement

List of tables

List of figures

Chapter	1	Introduction	1
	1.1	Mixture distributions	1
		1.1.1 Estimating parameters of mixture distributions	4
	1.2	Mixtures of exponential distributions	6
	1.3	Aims and Objectives	8
	1.4	Methodology	8

Chapter	2	Estimation using the method of moments	10
	2.1	Introduction	10
	2.2	Method of moments and moment estimators	13
	2.3	Application of the method of moments to an exponential mixture	13
	2.4	Moment estimates using numerical methods	18
	2.5	Starting values (Initial guesses)	19
	2.6	Simulation study	21
	2.7	Results	25
	2.8	Conclusions	26

vii

.

Chapter	3	Estimation using the method of maximum	29
		likelihood	
	3.1	Introduction	29
	3.2	The method of maximum likelihood	33
	3.3	Maximum likelihood estimates of a mixture of two exponential components	35
	3.4	A relationship between the estimates of the parameters of an exponential mixture	37
	3.5	Optimization techniques	39
		3.5.1 Nelder and Mead's method	42
		3.5.1(a) Minimization of - log likelihood function using <i>Nelder</i> and <i>Mead</i> 's method	45
		3.5.2 Newton - Raphson method	47
		3.5.2(a) Solving the normal equations using <i>Newton-</i> - <i>Raphson</i> method	49
		3.5.3 Sequential Unconstrained Minimization Technique (SUMT)	50
		3.5.3(a) Solving the normal equations using SUMT	52
	3.6	Starting points (Initial guesses)	55
		3.6.1 Method 1	57
		3.6.2 Method 2	60
	3.7	Simulation study	66
	3.8	Simulation results	68
	3.9	Conclusions	75

3

Chapter	4	Applications of exponential mixtures	81
	4.1	Introduction	81
	4.2	Survival periods of cancer patients	82
Table		4.2.1 Analysis of the mixtures of survival periods	84
		4.2.2 Results	85
	4.3	Life assurance schemes	86
	4.4	Exponential mixtures in marketing field	87
	4.5	Conclusions	89
Chapter	5	Conclusions and Discussion	91
Appendi	ces A	ppendix I(a)	94
	A	ppendix I(b)	95
	А	ppendix II	96
	А	ppendix III	108

References

112-117

3