MOLECULAR MECHANISMS INVOLVED IN PROTEIN STABILISED

109675 AL 18/1

OIL IN WATER EMULSIONS

BY

NANDANIE DAYA EDIRIWEERA

B.Sc. (HONS), M.Sc, DPL. FD. SC. (JPN)

THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR DOCTOR OF PHILOSOPHY

OF THE

FACULTY OF APPLIED SCIENCE UNIVERSITY OF SRI JAYEWARDENEPURA

SRI LANKA.

(AUGUST 1987)

109675

(xxii)

ABSTRACT

Molecular mechanisms involved in the preparation of protein stabilised emulsions were studied using four different types of proteins which are known to have a wide range of molecular structures and properties. Proteins used were sodium caseinate, whey protein concentrate, bloodplasma preparation and soy protein isolate. The ability and the performance of these proteins to stabilise oil in water emulsions (40% soy bean oil/water) were studied, under different conditions of pH and ionic strengths. (pH 6.0 and 7.0 in water and in 0.2 M.NaCl).

Emulsions were prepared using a standardised emulsification system, where the power input, number of passes of the emulsion through the recirculating system, temperature and the pressure input were controlled and recorded for all the emulsions studied.

The stability of the emulsions while fresh, heated (80°C for 30 min.), frozen and freeze dried were determined by characterising the emulsions using microscopy, determination of the particle size by turbidimetric method, determination of protein load, coalescence stability by hexane extraction method and oil separation on centrifugation. The latter part of the thesis deals with the study carried out, in determining the effect of method of emulsification, type of oil, protein and the pH on creaming stability.

The results obtained in this study supports theory of emulsion stability reported by the MacRitchie et al (1979). Caseinate stabilised emulsions were the most stable under the conditions studied. Of the caseinate stabilised emulsions (0-6) emulsions were the most stable when fresh and heated. Whereas (0.2 - 7) formed the most stable frozen and freeze dried emulsions. Emulsions stabilised using whey protein concentrate and bloodplasma formed the second group of coalescence stable emulsions while soy protein stabilised emulsions were the least stable under the conditions studied. It was also revealed from the results obtained that emulsions with thin protein membranes were the most stable when fresh and heated while those with thick protein membranes were the most stable on freezing and freeze drying. Best creaming stability was obtained around the isoelectric pH of the protein.

TABLE OF CONTENTS

			I	Page
TABLI	E OF COI	NTENTS		(i)
LIST	OF TAB	LES	7)	/ii)
LIST	OF FIG	URES	(v :	iii)
ABBRI	EVIATIO	NS	. (xv:	iii)
ACKNO	OWLEDGE	MENTS		(xx)
ABSTI	RACT		(***	kii)
CHAP	FER I			
1.1	INTROD	UCTION		1
	1.1.1	Mode of	formation of emulsions	6
	1.1.2	Stabilit	ty of emulsions	12
		1.1.2.1	Creaming stability	15
		1.1.2.2	Coalescence stability	15
	1.1.3	Protein	stabilised emulsions	16
		1.1.3.1	Effect of protein solubility	19
		1.1.3.2	Effect of pH	20
		1.1.3.3	Different proteins and	21
		1.1.3.4	The role of surface properties	522
	1.1.4	Processi	ing of protein stabilised	
		emulsior	ns	23
1.2	THEORI	ES OF EMU	JLSION STABILITY	30
	1.2.1	Surface-	-chemical factors in stability	30
		1.2.1.1	Surface forces in liquid	2.2
		1 2 1 2	Surface activity and dynamic	33 41
		1 • 2 • 1 • 2	stability with micromolecular	- 1
			emulsifying agents	
	1.2.2	Applicat	tion of the theory of stabi-	45
		lity of	lyophobic colloids to	2
		emulsior	ns	
		1.2.2.1	D.L.V.O. theory	45
		1.2.2.2	Electrostatic repulsion	46

		Page
	1.2.2.3 Total interaction curves	48
	1.2.2.4 The secondary minimum	57
1.2.3	Stability against coalescence	52
	related to mechanical properties of interfacial layer	
	1.2.3.1 Macromolecular stabilisers	52
	1.2.3.2 Theory of MacRitchie et al	54
	(1979) ¹¹³ on stability of their films	
	1.2.3.3 Stabilisation by finely divided solids	55

1.3. SCOPE OF THE THESIS

CHAPTER II	MATERIALS AND METHODS	
PART I -	The coalescence stability of protein	60
	stabilised emulsions, fresh, heated,	
	frozen and freeze dried	
2.1.1	Materials	61
2.1.2	Preparation of samples	61
2.1.3	Preparation of emulsions	62
2.1.4	Characterisation of emulsions	67
	2.1.4.1 Microscopy	67
	2.1.4.2 Particle size determination	68
	2.1.4.3 Determination of percentage coalesced fat, by hexane extraction method	71
	2.1.4.4 Determination of percentage protein adsorption and protein load (mg protein adsorbed/fat surface area)	74

	Page
2.1.4.5 Determination of perc	en- 78
tage of oiling off on	
centrifugation	
PART II - Determination of Interfacial	78
tension of protein solutions	by
the drop volume technique	
PART III - Creaming stability of protein	83
stabilised oil in water emuls	ion
2.111.1 Materials	83
2.111.2 Preparation of samples	85
2.111.3 Preparation of emulsions	85
2.111.4 Characterisation of emulsions	86
CHAPTER III RESULTS	
PART I - The coalescence stability of	88
protoin stabilized emulsions	
protein stabilised emuisions,	
fresh, heated, frozen and fre	eze
fresh, heated, frozen and fre dried	eze
fresh, heated, frozen and fre dried 3.1.1 The fat surface area produced	eze as 88
fresh, heated, frozen and fre dried 3.1.1 The fat surface area produced a function of power consumpti	eze as 88 on •
fresh, heated, frozen and fre dried 3.1.1 The fat surface area produced a function of power consumpti during emulsification	eze as 88 on
<pre>fresh, heated, frozen and fre dried 3.1.1 The fat surface area produced a function of power consumpti during emulsification 3.1.2 The relative width of the fat</pre>	eze as 88 on 95
<pre>fresh, heated, frozen and fre dried 3.1.1 The fat surface area produced a function of power consumpti during emulsification 3.1.2 The relative width of the fat droplet size distribution (Cs</pre>	eze as 88 on 95),
<pre>fresh, heated, frozen and fre dried 3.1.1 The fat surface area produced a function of power consumpti during emulsification 3.1.2 The relative width of the fat droplet size distribution (Cs as a function of the power co</pre>	eze as 88 on 95), nsump-

Ρ	а	q	e
-	~	-	~

- 3.1.3 The protein load (mg protein adsorbed/m² 97 fat surface area) as a function of the fat surface area
- 3.1.4 The percentage protein adsorbed as a 99 function of the fat surface area
- 3.1.5 The percentage of oil extracted by 101 hexane as a function of the fat surface area m²fat/ml emulsion
 - 3.1.6 The percentage of oil extracted by 104 hexane in frozen emulsions, as a function of the fat surface area m²fat/ml emulsion
 - 3.1.7 The percentage of oil extracted by 107 hexane of the freeze dried emulsions, as a function of the fat surface area m²/fat/ml emulsion
 - 3.1.8 The percentage of oil extracted by 109 hexane of the heated emulsions, as a function of the fat surface area m²fat/ml emulsion
 - 3.1.9 The percentage of oil extracted by 112 hexane as a function of the percentage oil separated on centrifugation
 - 3.1.10 Microscopic evaluation of fresh 114 emulsions
 - 3.1.11 Microscopic evaluation of the frozen 117 emulsions

		Page
3.1.12	Microscopic evaluation of the freeze	117
	dried emulsions	
3.1.13	Microscopic evaluation of the heated	121
	emulsions	
PART II		
	The interfacial tension as a function	124
	of time for sodium caseinate (0-6),	
	(0-7) and whey protein (0-6), (0-7)	
	at different concentrations	
PART III	Creaming stability of protein stabi-	129
	lised oil in water emulsions	
3.111.1	Effect of method of emulsification	129
	on the creaming stability of oil in	
	water emulsions (20%), stabilised by	
	skim milk powder	
3.111.2	Effect of pH on the creaming stabi-	131
	lity of coconut oil (20% wt/wt), in	
	water emulsions stabilised by skim	
	milk powder	
3.111.3	Effect of protein on the creaming	1 3 3

- stability of coconut oil (20% wt/wt) in water emulsions using skim milk power and sodium caseinate (2.5% wt/wt), at pH 5.0
- 3.111.4 The effect of type of oil on the 135 creaming stability of oil (20% wt/wt) in water emulsions

(v)

			Page
CHAPTER	VI	DISCUSSION	137

LIST OF REFERENCES

190