EVALUATION PROPERTIES OF OIL EXTENDED NATURAL RUBBER USING DUTREX -R OIL

BY

BALARAJANI BALASUNDARAM

Thesis submitted in partial fulfilment of the requirements for the degree of Master of Science of the Faculty of Applied Science, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.

150277

October 1999.

Abstract

A novel technique for the incorporation of oil emulsion into the latex was developed which was found to be very much less time consuming when compared with the traditional oil extension process. This technique has been used in this project in preparing a range of laboratory scale oil extended natural rubber samples.

Acetone extractions show that about 74 % of the oil could be easily incorporated into the latex, using this technique. Mooney Viscosity, Initial Plasticity of Dutrex - R oil extended natural rubber samples are found to decrease with increasing the level of oil extension. 15 % and 20 % Dutrex - R oil extended natural rubber samples came to be determined as the best percentages of oil incorporation.

Evaluation of processing properties of oil extended natural rubber was done in the Brabender Plasticorder. The energy required to masticate the rubber for particular time, of Dutrex – R oil extended natural rubber samples are found to decrease with increasing the level of oil extension

The tyre tread compounds were prepared by using the above mentioned two Dutrex R oil extended natural rubber samples and unextended control samples. Thereafter rheological properties were calculated. It was found that the Scorch time and 90 % cure time was found to increased with increasing the level of oil extension.

Evaluation of physical properties of the tyre tread compounds prepared by using Dutrex – R oil extended natural rubber showed changes in some physical properties such as tensile strength, modulus and compression set and hardness of vulcanisate decreased with increasing the oil extension. Also laboratory abrasion resistance of oil extended tread compounds was found to be good and tear strength is good in all levels.

Based on the results of acetone extraction values, 15% and 20 % of the oil extended rubber were selected as the best percentage and for the preparation of tyre tread compound with the assistance of the Associated Motor Ways Ltd.

Rheological properties of the factory scale tread compound with Dutrex - R oil extended natural rubber showed more poor reversion resistance than the control tread compound

Factory scale tread compound prepared with Dutrex - R oil extended natural rubber showed surprisingly good abrasion resistance.

Evalution of service properties of these retreaded tyres on the roads is in progress.

Contents

	Page No
List of tables	i
List of figures	iii
Acknowledgements	vi
Abstract	vii
Chapter One	
1. Introduction	1
1.1 Oil Extended Natural Rubber (OENR)	1
1.1.1 What is OENR	1
	2
1.1.2.2 Dry Mixing	2
1.1.2.2.1 Kualokep Process	3
1.1.2.2.2 Socfin Process	3
1.2 Advantages of the use of OENR	4
1.3 Main Objectives of the Present Study	5
2. Chapter Two	
2.1 General account on OENR	7
2.2 Dutrex R Oil	8
2.3 Analysis of Dutrex R Oil	10
2.4 Typical properties of the three types of	
Rubber Processing oil	11
2.5 Compounding effects of petroleum processing	oil 12

	2.5.1	Effec	ts upon processablity	12
	2.5.2	Effec	ts upon Vulcanisate Properties	14
		2.5.2.1	Effect of oil loading	15
		2.5.2.2	Effect of oil viscosity	15
		2.5.2.3	Effect of oil composition	16
2.6	Functi	on of oil i	n rubber compounding	19
2.7	Proper	ties of OE	NR	20
2.8	Proper	ties of Oil	Extended Polymer blends	25
2.9	Use of	OENR in	tyre industry	30
3 .	Chap	ter Thi	·ee	
3.1	Materi			34
	3.1.1	Lati	ces	34
	3.1.2	Reag	gents	35
	3.1.3	Othe	er ingredients	36
3.2	Experi	mental pro	ocedure	36
	3.2.1	Prep	paration of OENR	36
	2	3.2.1.1	Preparation of Oil Emulsion	36
*	1	3.2.1.2	Preparation of Dutrex-R Oil Extended-	
			Natural Rubber for laboratory scale trials	37
		3.2.1.3	Preparation of Dutrex-R OENR for	
			Factory scale trials	38
	3.2.2		Characterization of OENR	38
	3	3.2.2.1	Determination of Acetone Extracts	38
	3	3.2.2.2	Determination of Mooney Viscosity	40
	3	3.2.2.3	Determination Plasticity Retention Index	42
	í	3.2.2.4	Determination of Density	43
	3 2 3	Proc	essing properties of OENR	43

٠	3.2.3.1	Processing properties of laboratory	
		scale OENR samples	43
	3.2.3.2	Processing properties of OENR sample	
		factory scale trials	44
3.2.4	Prepa	ration of OENR based Tread Compound	44
	3.2.4.1	Preparation of OENR based Tread-	
×		Compound laboratory scale trials	45
	3.2.4.2	Preparation of OENR based Tread-	
	,	Compound factory scale trials	46
3.2.5	Meas	surement of Rheological properties of	
	Tread	Compound	47
3.2.6	Deter	mination of technological properties of	
	Tread	vulcanizates	48
	3.2.6.1	Tensile properties	48
	3.2.6.2	Hardness	51
	3.2.6.3	Rebound Resilience	51
	3.2.6.4	Abrasion Resistance	52
	3.2.6.5	Compression set	53
	3.2.6.6	Flexural Strength	54
	3.2.6.7	Tear Strength	54
3.2.7	Prepa	ration of Treads	55
	3.2.7.1	Evalution of Service Properties	55

Cha	pter Fo	ur	56
4.1	Results	of Characterization of OENR	57
	4.1.1	Percentage of Oil Incorporation	57
	4.1.2	Mooney Viscosities	59
	4.1.3	Plasticity Retention Index values	60
	4.1.4	Densities	62
4.2	Results	of Processing properties of OENR	63
	4.2.1	Processing properties of laboratory scale-	
		OENR samples	64
	4.2.2	Processing properties of factory scale-	
		OENR samples	64
4.3	Rheologi	ical properties of laboratory scale and factory-	
	Scale tre	ad compounds	76
4.4	Results	of technological properties of laboratory scale-	
	and Fact	ory scale tread compounds	83
	4.4.1	Tensile properties of unaged vulcanizate	83
	4.4.2	Tensile properties of vulcanizates aged at -	
		100°C for 72hrs	84
	4.4.3	Results of Density, Hardness, Rebounce -	
		Resilience and Tear Strength values of -	
		laboratory scale and-factory scale Vulcanizates	86

.

4.4	4 Results of Flexural Strength, Abrasion-	
	Volume Loss and Compression set laborato	ry
	scale and factory scale Vulcanizates	87
Chapte	r Five	89
5.1 Co	aclusion	90
5.2 Fu	rther evalution of OENR compounds	91
Refere	ices	92
Abbrev	ations	95