SPECTROSCOPIC AND ELECTROCHEMICAL STUDIES

172410

12004

03

OF IRON(II) AND COBALT(II) COMPLEXES; POTENTIAL DYE MATERIALS FOR NANO-POROUS

PHOTOVOLTAIC DEVICES

By

SUJEEWA SENARATH PALAYANGODA [B.Sc.(Chemistry) sp., USJ, Sri Lanka]

Thesis submitted in partial fulfillment of the requirements for the Degree of Master of Philosophy in Chemistry of the Faculty of Applied Science, University of Sri

Jayewardenepura, Nugegoda, Sri Lanka.

172410

4

ABSTRACT

Metallochromic triphenylmethane type dyes (bromopyrogallol red and catechol violet) have attracted attention of many scientists due to their potential ability to chelate with a number of transition metal centers. The dye materials belonging to this class is capable of producing high photocurrents and photovoltages when used as sensitizers in nano-porous TiO₂ photovoltaic cells. However, slow photo-degradation of dye molecules and low photocurrent conversion efficiencies have been the major problem.

Complexation of a triphenylmethane ligand with a transition metal center shows enhanced photovoltaic properties when compared with the photovoltaic cells coated by free triphenylmethane ligand only. Electrochemical and absorption spectroscopic data suggest that the nature of the lowest electronic transition of such a complex as a π^* (ligand) \leftarrow d π (metal), metal to ligand charge transfer transition. Photovoltaic cells coated with these transition metal complexes show higher stability for photo-degradation and incident photocurrent conversion efficiencies with a UV radiation blocking filter.

When catechol violet is complexed with $Co^{2+}(1,10-phen)_2$ molety, it shows emission as well. Experimental and theoretical data suggest that the emission of this complex occurs from an upper ligand centered state and not from a low lying MLCT state.

1,2-dihydroxyanthraquinone or 1,2,5,8-tetrahydroxyanthraquinone can be used as sensitizing dye material in nano-porous solar cells, not only they produce fairly high photocurrent and photovoltage, when exposed to light, but also those properties show high sensitivity to the protonation and deprotonation of the 2 hydroxy group of the ligand when the pH value of the solvent is changed. Semi-empirical computational studies have shown that fine tuning of HOMO-LUMO orbitals are responsible for the sensitivity.

xi

TABLE OF CONTENTS

Page

1

1

3

5

7

7

7

7

8

8

8

9

11

LIST OF CONTENTS	i
LIST OF TABLES	vi
LIST OF FIGURES	vii
ACKNOWLEDGEMENTS	х
ABSTRACT	xi

INTRODUCTION

CHAPTER –1

Theoretical Background 1. Solar cells 1.1 1.2 Energy band gap of solids Fermi level 1.3 Charge carriers 1.4 141 Photo-excitation 1.4.2 Thermal excitation 1.4.3 Doping Conductivity of a semiconductor 1.5 1.5.1 Electronic conductivity Ionic conductivity 1.5.2 1.6 Dye sensitization

1.6.1 Kinetics of the semiconductor electrode/electrolyte interface

i

1.7	Efficien	cy of a Photo Electrochemical Cell	14
	1.7.1	Drawbacks of the efficiency of the Photo Electrochemical Cell	16
1.8	Properti	es of electronically excited states of transition metal complexes	16
	1.8.1	Criteria for classification of the excited state	17
	1.8.1.1	Metal centered (MC) excited states	17
	1.8.1.2	Metal-to-Ligand Charge Transfer (MLCT) states	18
	1.8.1.3	Ligand Centered (LC) excited states	18
	1.8.2	Transition metal complexes as dye material for solar cells	19
		(Photovoltaic cells)	
1.9	Fate of a	a dye molecule in a Photo Electrochemical Cell	21
1.10	Acid-ba	se switching of alizarin and quinalizarin sensitized nano-porous	22
	Photovo	ltaic devices	
1.11	Cyclic V	oltammetry	23
	1.11.1	Data interpretation	23
1.12	Comput	ational Chemistry	26
	1.12.1	HyperChem software package	26
	1.12.2	Building and displaying molecules	27
	1.12.3	Optimizing the structure of molecules	27
	1.12.4	Molecular Mechanics (MM+)	27
	1.12.5	Semi-empirical methods of quantum chemistry	28
	1.12.5.1	General background	28
	1.12.5.2	Molecular geometry	28
	1.12.5.3	Calculating electronic potential energy	29
	1.12.5.4	Features of semi-empirical method	29

1.12.5.5 Range of semi-empirical methods	29
1.12.5.6 ZINDO/1 (Zerner's Intermediate Neglect of Differential Overlap)	30
method	
1.12.5.7 Selecting options for ZINDO/1 method	30
1.12.5.8 Single point calculation	32
1.12.5.9 Contour plots	32
1.12.5.10 Total electron density calculations (charge density)	32

CHAPTER –2

Experimental

2.1	Chem	icals and Solvents	33
2.2	Prepar	ation methods	33
	2.2.1	Preparation of conducting glass plates (CTO) for applying TiO_2 layer	33
	2.2.2	Deposition of TiO ₂ on conducting glass plates	33
	2.2.3	Preparation of $Fe(II)(C_2O_4)_2$ bromopyrogallol red complex	34
	2.2.4	Preparation of $[Co(1, 10-Phen)_2]$ Cl ₂ complex	34
	2.2.5	Preparation of $Co(1,10$ -Phen) ₂ bromopyrogallol red and	34
		Co(1,10-Phen) ₂ catechol violet complexes	
	2.2.6	Preparation of I/I ₃ ⁻ electrolyte	35
	2.2.7	Coating procedure of dye on semiconductor films	35
	2.2.8	Preparation of acidic and basic ethanolic solutions	35
	2.2.9	Measuring the photocurrent and photovoltage values of acidic medium	35
		and basic medium dye coated photovoltaic cells	

2.3	3 Instruments and techniques		36
	2.3.1	Absorption and Reflectance spectra	36
	2.3.2	Photocurrent action spectra	36
	2.3.3	Emission spectra	38
	2.3.4	Cyclic voltammograms	38
	2.3.5	Solar simulator	40
	2.3.6	HyperChem quantum mechanical calculations	40

CHAPTER -3

Results and Discussion

3.1	Preparation of a dye sensitized photovoltaic cell	41
3.2	Preparation of a metal complexes	46
3.3	Comparison of spectroscopic properties of Fe(II)(C ₂ O ₄) ₂ bromopyrogallol red	46
	complex with bromopyrogallol red free ligand	
3.4	Spectroscopic and photovoltaic properties of Co(11)(1,10-phen) ₂	55
	bromopyrogallol red and Co(II)(1,10-phen) ₂ catechol violet complexes	
3.5	Emission and absorption properties of Co(II)(1,10-phen) ₂ catechol violet and	65
	catechol violet ligand in methanolic solution	
3.6	Acid-base switching of alizarin and quinalizarin sensitized nano-porous	68
	photovoltaic devices	

