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ABSTRACT

(,-

Mctallochrornic riiphenylmcthane type dyes (bromopyrogallol red and catechol

violet) have attracted attention of many scientists due to their potential ability to chelate

with a number or transition metal centers, The dye materials belonging to this class is

capable of producing high photocurrents and photovoltages when used as sensitizers in

nano-porous TiO~ phoiovoltaic cells However, slow photo-degradation of dye molecules

and low photocurrent conversion efficiencies have been the major problem,

Complexation of a triphenylmethane ligand with a transition metal center shows

enhanced photovoltaic properties when compared with the photovoltaic cells coated by

free triphenylmethane ligand only Electrochemical and absorption spectroscopic data

suggest that the nature of the lowest electronic transition of such a complex as a 1(* (ligand)

(- d IT (1I11'I.dl, metal to ligand charge transfer transition Phoiovoltaic cells coated with

these transi t ion metal com pic xes show higher stabi Iity for photo-degradation and

incident photocurrent conversion efficiencies with a UV radiation blocking filter.

When catechol violet is complexed with C02+( I, IOvphen), moiety, it shows

emission as well. Experimental and theoretical data suggest that the emission of this

complex occurs from an upper ligand centered state and not from a low lying MLCT

state

I ,2-dihydroxyanthraquinone or I ,2,5,8-tetrahydroxyanthraquinone can be used as

sensitizing dye material in nano-porous solar cells, not only they produce fairly high

photocurrent and photovoltage, when exposed to light, but also those properties show

high sensitivity to the protonation and deprotonation of the 2 hydroxy group of the ligand

when the pH value of the solvent is changed. Semi-empirical computational studies have

shown that fine tuning of HOMO-LUMO orbitals are responsible for the sensitivity,
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