Chemistry and Standardization of "Bakuchi oil" an Ayurvedic medicinal oil used traditionally in the treatment of vitiligo.

By

Ranamuka Devage Ajantha Rohinie Gunawardena

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of Master of Philosophy in chemistry

on 31st December, 2007

194821

ABSTRACT

Chemistry and Standardization of "Bakuchi oil" an Ayurvedic medicinal oil used traditionally in the treatment of Vitiligo.

Ranamuka Devage Ajantha Rohinie Gunawardena

Vitiligo is a disfiguring disease, which is characterized by the appearance of white patches on the skin. Topical application of psoralen based drugs combined with exposure to ultra violet radiation forms the major treatment method in both the modern and Ayurvedic systems of medicine. However, according to available data, any synthetic form of psoralen or extracts from furanocoumarin containing herbs cannot be considered risk free. So their use in the treatment needs specialized medical expertise and standardized products.

"Bakuchi oil", prepared from *Psoralea corylifolia* fruits is widely used in the treatment of vitiligo in the Ayurvedic system of medicine in Sri Lanka. The fruit of *Psoralea corylifolia* contains a considerable amount of psoralen type compounds, the most abundant of which are psoralen and isopsoralen. Given the photo toxicity of psoralens, it is essential that "Bakuchi oil" oil be standardized for its psoralen content.

Towards this end a method was developed for the quantification of psoralen in "Bakuchi oil" by TLC-FD densitometry. The method was of acceptable precision and accuracy with a Coefficient of Variation of a 4.3 % and a recovery rate of 103% when 30 % of psoralen was added.

"Bakuchi oil" samples collected from different manufacturers gave a range of concentrations from 0.038 to 0.226 mg/ml compared with the reference sample which was prepared at the BMARI which gave a concentration of 0.083 mg/ml. This wide variation in the concentration of psoralen indicates the need for standardization and quality control of products used in Sri Lanka. Thin layer chromatographic profiles (finger prints) which would be useful for this purpose were developed for "Bakuchi oil".

The chemical analysis of the oil required the development of a method to separate *Psoralea corylifolia* secondary metabolites from fatty materials in the oil. A successful method which involved selective solubility in a mixture of acetone and methanol at low temperatures was developed.

Six of the compounds present in *Psoralea corylifolia* that were incorporated in "Bakuchi oil" were identified by detailed comparative chromatographic analysis of the plant extract and the medicinal oil. The six compounds are psoralen, isopsoralen, dehydroisopsoralidin, corylin, isobavachalcone, and psoralidin. Of these, dehydroisopsoralidin is a new natural product. Structures of the isolated compounds were determined by UV, IR, Mass, ¹H NMR, DEPT, HSQC, HMBC, and ¹³C NMR spectroscopic data.

A surprising finding was the fact that bakuchiol which is a major secondary metabolite found in the fruits of *Psoralea corylifolia* is not incorporated in "Bakuchi oil"even though it is quite soluble in sesame oil and is stable at 140° C, the highest temperature reached during processing.

The rates of incorporation of psoralen in "Bakuchi oil" during the different stages of manufacture were studied. It was found that the preparation process currently used for "Bakuchi oil" at BMARI is wasteful in terms of both psoralen and energy, and that about 90% of psoralen found in the fruit is thrown away. A modification of the drug preparation process to eliminate the water extraction stage and to directly extract the fruits with sesame oil is suggested as being worthy of further study.

CONTENTS

		page
TABLE OF CONTENTS		
LIST OF TABLES		
LIST OF FIGURES		vii
LIST OF ABBREVIATIONS		ix
ACKNOWLEDGEMENTS		xi
ABSTRACT		
1.	Introduction	1
1.1	Traditional systems of medicine and Ayurveda	1
1.1.1	Types of Ayurvedic drugs	1
1.1.2	Standardization of Ayurvedic drugs	2
1.2	Vitiligo	6
1.2.1	Treatment methods	6
1.2.2	Psoralen Drugs	7
1.2.3	"Bakuchi oil"	10
1.2.3.1	Preparation of "Bakuchi oil"	10
1.2.3.2	Importance of standardization of "Bakuchi oil"	11
1.3	Psoralea corylifolia L	12
1.3.1	Chemical constituents of Psoralea corylifolia	13
1.3.2	Biological activities of Psoralea corylifolia	20
1.4	Scope of the work described in this thesis	26
2.0	Materials and Method	27

2.1	Materials	27
2.2	General procedures	27
2.3	Isolation and chemical characterization of compounds	
	from the fruits of Psoralea corylifolia	30
2.3.1	Psoralen (1) and isopsoralen (2)	30
2.3.1.1	Separation of the two isomers	31
2.3.2	Bakuchiol (38)	33
2.3.3	Fixed oil	34
2.3.4	Dehydroisopsoralidin (42), corylin (11), psoralidin(5)	
	and isobavachalcone (30)	34
2.3.5	Extraction and GC finger printing of essential oil of the	
	fruits of Psoralea corylifolia	37
2.3.5.1	GC finger print of the essential oil	38
2.4	Analysis of "Bakuchi oil"	38
2.4.1	Preparation of "Bakuchi oil" extracts for TLC experiments	38
2.4.2	Gas Chromatographic experiments to study the fate of bakuchiol	39
2.5	Standardization of "Bakuchi oil"	41
2.5.1	TLC finger prints	41
2.5.2	Determination of the concentration of Psoralen in "Bakuchi oil"	42
2.5.2.1	Standard curve	42
2.5.2.2	Quantitative extraction of psoralen from "Bakuchi oil"	43
2.5.2.3	Method validation	44
2.5.3	Psoralen concentration in different samples of "Bakuchi oil"	45

2.5.4	Psoralen concentration in different batches of	
	Psoralea corylifolia fruits	46
2.5.5	Psoralen concentration in sesame oil extract of seed powder	
	and the extraction efficiency	47
2.5.6	Solubility of psoralen in sesame oil	48
2.5.7	Psoralen concentration in water extract of Psoralea corylifolia	
	fruits and the extraction efficiency by water	48
2.5.8	Solubility of psoralen in water	49
3.0	Results and Discussion	51
3.1	Studies on the chemical composition of <i>P.corylifolia</i>	
	and "Bakuchi oil"	51
3.2	Isolation and identification of compounds from	
	the fruits of <i>P.corylifolia</i>	52
3.2.1	Psoralen (1) and isopsoralen (2)	53
3.2.2	Bakuchiol (38)	57
3.2.3	Fixed oil	63
3.2.4.	Dehydroisopsoralidin (42)	64
3.2.5	Corylin (11)	69
3.2.6	Psoralidin (5)	72
3.2.7	Isobavachalcone (30)	75
3.3	Analysis of "Bakuchi oil"	80
3.4	Standardization of "Bakuchi oil"	84
3.4.1	Chromatographic finger prints	84
3.4.2	Ouantification of psoralen in "Bakuchi oil"	89

3.5	Psoralen concentration in different "Bakuchi oil" samples	94
3.6	Psoralen concentration in different batches of <i>P.corylifolia</i> fruits	95
3.7	Effect of processing parameters on the composition and	
	the quality of the drug.	96
3.7.1	Preparation of "Bakuchi oil"	96
3.7.2	Rate of incorporation of psoralen	98
3.7.3	Study of the fate of "bakuchiol" during the manufacturing	
	Process	101
4.	Conclusion	109
5.	References	110
6.	Appendix	119
	Appendix i : List of publications	120
	Appendix ii : Spectral data.	121

