A STUDY ON THE DISEASE RESISTANCE IN HEVEA BRASILIENSIS

TO COLLETOTRICHUM GLOEOSPORIOIDES

A thesis submitted to the Faculty of Applied Science,

University of Sri Jayawardenapura, Sri Lanka

for the

Degree of Master of Science

by

PALLEPITIYA KANKANAMALAGE SAMARADEEWA B.Sc.(Sri Lanka)

87825

Department of Biological Science, Sri Jayawardenapura University, Nugegoda, Sri Lanka.

Library Department of Biologies i Sciences University of Sri Jayewardene, pra Nugegoda:

October, 1981

1825

ABSTRACT

The factors responsible for disease resistance of <u>Hevea</u> clones to <u>C</u>. <u>gloeosporioides</u> were studied. First, field observations showed that the susceptibility of <u>Hevea</u> to the disease varied in different clones and an interaction was seen between clones and locations. When the infection was low incidence and severity of the disease were linearly related; a curvilinear relationship was evident when the level of infection was high.

Isolates of <u>C</u>. <u>gloeosporioides</u> varied in their growth characteristics, morphology and spore production. They showed differential susceptibility to various clones.

Leachate of resistant clones suppressed the growth of the pathogen and favoured appressorium formation. <u>In vitro</u> studies indicated that growth promoting substances were not conducive for formation of appressoria. There was no difference either quantitatively or qualitatively in sugars and amino acids in the leachate of different clones.

Waxes and substances associated with it are inhibitory on the pathogen at high concentrations. These substances separated by TLC showed two inhibitory zones. Phenolic and acidic substances are associated with the crude wax extract.

Leaves of resistant clones supported less germtube growth than susceptible leaves, but favoured appressorium formation. On penetration of resistant tissues a rapid disorganization of the cell content was observed, arresting hyphal growth. In susceptible clones hyphae invaded deeper in to the tissues and colonized the mesophyll cells both inter and intracellulerly; acervuli were formed 72 h after inoculation. The migration of nuclei towards the site of penetration was observed in resistant clones.

There was no relationship between either total or orthodihydroxy phenol level and field resistance of <u>Hevea</u> clones. But the infection was accompanied by a change in the orthodihydroxy phenol level, particularly in resistant clones.

In <u>Hevea</u>, peroxidase activity was higher than polyphenoloxidase and increase in peroxidase level with the infection was more pronounced in resistant clones. Infection also resulted in the increase of soluble protein content. CONTENTS

]	Page
	ME	M O	R	A 1	D	U	Μ															I
	C O	N T	E	ΝΊ	S																	II
	A C	K N	0	WI	E	D	GΕ	Μ	Ε	N	T	S										VI
	A B	ST	R	A C	T																٦	VII
	A B	BR	E	VJ	[A	Т	ΙO	N	S													IX
1.	IN	TR	0	DI	JC	T	ΙO	N														1
2.	LI	ΤE	R	A J	U	R	E	R	Ε	V	I	Έ	W									9
3.	MA	ΤE	R	IA	L	S	A	N	D		Μ	Ε	T	H C	D	S						21
	I.	Is	ola	atic	on	and	ma	in	tei	nai	nc	e (of	cul	tur	es						21
	II.	Pro	epa	irat	tio	n o	fi	no	cul	lu	n											21
	III.	Se:	lec	tic	on	of	pla	nt	ma	ati	er:	ia	Ls									22
	3.1	Di	sea	se	in	cid	enc	e a	and	i i	se	vei	ci	ty o	fH	eve	a c	lor	nes			22
		3.	1.1	As	se	ssm	ent	0:	f	in	cid	ler	100	e an	id s	eve	rit	y i	in			
				di	ſſ	ere	nt	en	vi	roi	nm	ent	ts									22
-		3.	1.2	R€	la	tio	nsh	ip	be	eti	wei	en	d	isea	se	inc	ide	ence	e a.	nd		
		• 🛩 .		se	eve	rit	у															24
						Lin	ear	r	ela	a t:	io	nsł	nij	<u>ò</u>								24
				11		Com	par	is	on	b	eti	wee	ən	dif	fer	ent	f	inc	tio	ns		24
	3.2	Pa	thc	ger	nic	ity	of	d:	if	fe:	rei	nt	is	sola	tes							25
		3.2	2.1	Pı	:e-:	pen	etr	at:	io	n i	bel	na	vi	our								26
		3.2	2.2	2 G3	COW	th	cha	ra	cti	er:	is	tic	S	of	the	is	ola	ates	70			26
	3.3	Lea	af	ext	ıda	te	(le	acl	na'	te)											27
		3.	3.1	Pı	rep	ara	tio	n (of	1	ea:	f (exi	ıdat	e a	nd	exa	min	nat	ion		
				oi	f i	ts	eff	ec	t (on	tl	he	pa	atho	ger	L.						27
		3.	3.2	2 Cł	iro	mat	ogr	apl	hi	C	an	alį	ys:	is c	of t	he	exι	ıda	te			27
				2	i.	Sug	ars															27
				i	1	Ami	no	ac	id	S												28
		3.	3.3	5 I1	n v	itr	0 S	tu	di	es	W	itl	n i	suga	irs	and	an	in	<u> </u>	oido		20

II

			Page
	3.3.4	Determination of phenolic substances	
		present in the leachate	29
3.4	Leaf	surface waxes	29
	3.4.1	Determination of surface waxes	29
	3.4.2	Bioassay with the crude wax	30
	3.4.3	Ether extraction of acidic substances	31
	3.4.4	Direct bioassay using thin-layer chromatography	33
	3.4.5	Detection of phenolic compounds co-extracted	
		with wax	33
3.5	Histo	pathology	33
	3.5.1	Leaf clearing and growth measurements on	
		the leaf surface	33
	3.5.2	Fixation of tissues and staining for microscopic	
		observations	34
3.6	Pheno	ls	35
	3.6.1	Extraction and determination of phenols	35
	3.6.2	Quantitative assay for total and orthodihydroxy	
		phenols	36
	3.6.3	Qualitative variation of phenols	37
	3.6.4	Identification of phenolic compounds in	
		leaf extract	37
	3.6.5	Bioassay with the chromatography elute	38
	3.6.6	Effect of leaf extract on spore germination	39
3.7	Enzym	e assay	39
	3.7.1	Preparation of acetone powder	39
	3.7.2	Enzyme extraction and purification	40
	3.7.3	Measurement of enzyme activity	40

III

	rag
3.8 Protein determination	41
4. RESULTS	43
4.1 Disease incidence and severi	ty of <u>Hevea</u> clones 43
4.1.1 Influence of environment	nt on disease
incidence and severity	43
4.1.2 Relationship between in	ncidence and severity 53
i. Linear relationship	p 53
ii. Comparison between	functions 55
4.2 Pathogenicity of different is	solates 60
4.2.1 Pre-penetration behavio	our 60
4.2.2 Growth characteristics	of the isolates 61
4.3 Leaf exudate (leachate)	68
4.3.1 Effect of leaf exudate	on development of
the pathogen	68
4.3.2 Nutritive components in	n the leaf exudate 68
4.3.3 Effect of sugars and a	mino acids on the
pathogen	74
4.3.4 Phenolic compounds in	the leaf exudate 79
4.4 Waxes and associated substan	ces 79
4.4.1 Content of leaf surfac	e waxes 79
4.4.2 Effect of crude chloro	form extract on the
pathogen	82
4.4.3 Effect of different ex	tracts 85
4.4.4 Bioassay on thin-layer	chromatography 88
4.4.5 Chromatographic separa	tion of waxy materials 89
4.5 Histopathology	90
4.5.1 Pre-penetration studie	s of the pathogen 📀 90
4.5.2 Post-penetration studi	es of the pathogen 98

										Page				
	4.6	Ro	le	0	f	ph	en	ol	s in resistant <u>Hevea</u> clones	107				
		4.	6.	1	Ph	en	01	S	in healthy <u>Hevea</u> leaf tissues	107				
		4.6.2 Effect of infection on the phenol level												
		4.6.3 Qualitative estimation of phenols												
		4.6.4 Bioassays with the elutes of naturally												
					00	ecu	ri	ng	phenols	113				
		4.	,6.	5	Id	.en	ti	fi	cation of phenols	113				
		4.	.6.	.6	Tc	xi	.ci	ty	of the leaf extract	116				
	4.7	.7 Peroxidase and polyphenoloxidase activity												
		4	4.7.1 Enzyme activity in healthy leaves											
		4	.7.	2	Va	ri	at	ic	on of peroxidase and polyphenoloxidase					
					ac	etj	lvi	ty	with the infection	120				
	4.8	E	ffe	ect	t c	of	ir	nfe	ection on the protein content	122				
5.	DI	S	C	U	S	S	Ţ	0	N	126				
6.	RE	F	Ε	R	E	N	C	E	S	149				
7.	A I	P	Ε	N	D	I	X			176				

.

17