AN INTEGRATED APPROACH TO THE CONTROL OF WHITE ROOT DISEASE -CAUSED BY RIGIDOPORUS LIGNOSUS ON HEVEA IN SRI LANKA

104074

A2 10

By

KALUARCHIGE VIRAN PAUL MARIUS PERERA

B.Sc. (Agric.) Sri Lanka

Thesis submitted in partial fulfilment of the requirements for the

Degree of Master of Science

of the

Faculty of Applied Science University of Sri Jayewardenapura

Nugegoda

Sri Lanka

104074

1

May 1983

ŧ

AN INTEGRATED APPROACH TO THE CONTROL OF WHITE ROOT DISEASE CAUSED BY RIGIDOPORUS LIGNOSUS ON HEVEA IN SRI LANKA

BY K.V.P.M. PERERAY

ABSTRACT

The importance of pre-planting control is of utmost importance in relation to WRD control. The basic steps should be taken not at the time of uprooting but at least 4-5 years before. This would enable one or more of the several substitute crops with a benefit/cost ratio of more than one to be planted as found successful in this study. This will maximise land utilization and bring an income which can be further channelled to control procedures at the time of planting and thereafter. Substitute cropping will increase the chances of inoculum detection and inoculum degeneration with the frequent cultivation of the soil. Several fruit crops, grasses (cover crops) and even indicator crops were found useful over this period of time when compared to leaving the land follow. Fertilizer usage with these substitute crops could amend the soil to a favourable N/C ratio which in turn has a secondary effect on WRD control.

Proper control procedures adopted at the preplanting stage would reduce the inoculum left behind to cause infection to a minimum level. Uprooting has to be supervised strictly to ensure that infected tree roots are not left behind in the soil. Addition of the recommended dose of sulphur will be useful as a precaution. However, in this study no correlation was established between levels of infection and increase in fungal populations as a result of sulphur application. Addition of urea enhanced inoculum decay in a pot experiment. There was an initial decrease in the microflora with urea application. Subsequently the

VII

bacterial population increased while the fungal population did not show a marked increase. An increased N/C ratio may bring about a favourable microbial population for WRD control. An increased nitrogen content of the soil also enhanced the growth of <u>Hevea</u>. For the above reasons the application of additional doses of urea at planting may be beneficial in the long run. Further experimentation is needed to verify this. In one experiment the addition of basal fertilizer alone compared very well with sulphur and urea individually and with a combination of these treatments.

Post planting treatments depend on the successes of control at the earlier stages. Water miscible fungicides were useful as aprecaution on suspected areas as a regular monthly spray. Infected trees have to be treated with Shell Collar Protectant (SCP) which was found to be the most effective water immiscible fungicide. Calixin Collar Protectant was tested out and also found to be as effective. Treatment of pre-tappable and tappable trees was found to be economically feasible. Up to 90% of pre-tappable trees can be saved even if they show disease symptoms as it was revealed in this study.

So far chemical methods and a few biological and cultural methods have been used at different times of the planting cycle to control. WRD. This study shows how they can be integrated to the economic and pre economic life span of the crop by a disease control calendar which should be the quickest and the most effective way to control it. If left unchecked now, this disease can be a threat to rubber cultivation in Sri Lanka, when the prospects for the industry are not bright.

VIII

CONTENTS

			Page
CONT	FITS		I
ACKI	NOWLEDG	EMENTS	V.I
ABS	TRACT		VII
ABBI	REVIATI	ONS	TX
1.	INTRODUCTION		
	1.1	Classification and nomenclature	1
	1.2	Host range	2
	1.3	Disease symptoms	2
	1.4	Host parasite relationship	3
	1.5	Methods of disease control used in Sri Lanka	5
	1.6	Replanting cycle and disease control	6
	1.7	Methods of control	6
		1.7.1 Cultural practices that affect biological control	6
		1.7.1alAt pre planting stage	7
		b At planting stage	7
		c At post planting stage	7
		1.7.2 Chemical control	8
		1.7.3 The effect of the climate	9
	1.8	Management strategy for control	9
2.	LITERATURE REVIEW		
	2.1	Cultural practices	12
		2.1.1 Detection methods	12
		a Indicator plants and stakes	12
		b'collar inspection	13

				Page
		2.1.160)Foliar inspection	13
		2.1.1(d)Mulching	14
		2.1.2	Demarcation of patches	15
		2.1.3	Replacement of old stand	15
		2.1.4	The role of cover crops	16
		2.1.5	The role of other beneficial crops	17
		2.1.6	The action of sulphur	18
	2.2	Chemica	l control	19
		2.2.1	Water miscible fungicide	19
		2.2.2	Water immiscible fungicides	20
		2.2.3	Soil fumigation	21
	2.3	Combina	tion of control techniques	21
3.	MATERI	ALS AND 1	METHODS	22
	3.1	Detecti	on methods adopted leading to control	22
		3.1.1	The role of substitute crops	22
		a	Decay of inoculum under grass	23
		b		23
		с 3.1.2	Artificial inoculation The role of cover crops in decay of inoculum	23 23
		3.1.3	Pre-planting detection and control	25
		8, .	Field trial I	25
		b	Field trial II	25
		C	Field trial III	25
		d	Field trial IV	25
		3.1.4	Post planting detection and control	26
		a	Nutrient depletion and disease incidence	26
		b	Water potential studies	27

II.

Page Cultural practices which affect 27 biological control 27 3.2.1 The role of urea - laboratory investigation 28 3.2.2 The role of urea - pot experiment 29 The role of urea - field trial 3.2.3 30 The action of sulphur - field trial 3.2.4 32 3.2.4a An observation trial The comparative role of urea and 3.2.5 34 sulphur in control - pot experiment Effect of soil amendment combinations -3.2.6 35 pot experiment 3.2.7 Effect of soil amendments in relation 36 to clones - pot experiment 3.2.8 Effect of soil amendment combinations -37 field trial 38 3.2.9 Methods of uprooting Introduction of competitive fungi with 38 soil amendments .38 3.3.1 Pot experiment I 40 3.3.2 Pot experiment II The effect of non biological 3.3.3 41 cultural methods 41 a The digging of trenches 41 b The spacing of the new clearing 41 Chemical control 3.4 41 Water miscible fungicides - pot trial 3.4.1 Systemic fungicides and hydrogen 3.4.2 sulphide - pot trial 43 44 Water immiscible fungicides - pot trial 3.4.3 Water miscible fungicides - field trial 3.4.4 46 Effect of water immiscible fungicides on 3.4.5 47 pre tappable trees - field trial a Waterimmiscible fungicide - calixin 47 47 b. Method of fungicidal application precautions

3.2

3.3

TII

			Page
	3.4.6	Effect of water immiscible fungicides on tappable trees - field trial	48
4. RESULT	S		50
4.1	Detecti	on methods adopted leading to control	50
	4.1.1	The Tole of substitute crops	50
	a	Decay of inoculum under grass	73
	c	Decay of inoculum under sugarcane Artificial inoculation The role of cover crops	74 74 76
	4.1.3	Pre planting detection and control	
	a	Field trial I	81
	b	Field trial II	81
1	c	Field trial III	83
	d.	Field trial IV	85
	4.1.4	Post planting detection and control	85
	a	Nutrient depletion and disease incidence	85
	р	Water potential studies	86
4.2	Cultura control	l practices which affect biological	87
	4.2.1	The role of urea - laboratory investigation	87
	4.2.2	The role of urea - pot experiment	87
	4.2.3	The role of urea - field trial	91
	4.2.4 4.2.4a	The role of sulphur - field trial An observation trial	97 101
	4.2.5	Comparative role of urea and sulphur in control - pot experiment	102
	4.2.6	The effect of soil amendment combinations - pot experiment	107
	4.2.7	Effect of soil amendments in relation to clones - pot experiment	108
	4.2.8	Effect of soil amendment combinations - field trial	109
	4.2.9	Methods of uprooting	111

IV

				Pag€
	4.3		ction of competing fungi with endments	114
		4.3.1	Pot experiment I	114
		4.3.2	Pot experiment II	116
		4.3.3	The effect of non biological cultural methods	117
		(a)	The digging of trenches	118
3		(b)	The spacing of the new clearing	119
	4.4	Chemica	l control	120
		4.4.1	Water miscible fungicides - pot trial	121
		4.4.2	Systemic fungicides and hydrogen sulphur - pot trial	124
		4.4.3	Water immscible fungicides - pot trial	125
		4.4.4	Water miscible fungicides - field trial	130
		4.4.5	Effect of water immiscible fungicides on pre-tappable trees - field trial	131
		(a)	Water immscible fungicide - calixin	139
		(b)	Method of fungicidal application - precautions	139
		4.4.6	Effect of water immiscible fungicides on tappable trees - field trial	140
5.	DISCUS	SION		154
6.	LITERA	TURE CIT	ED	174
7.	APPEND	XI		183

V