Analysis of the genetic variation of the *An. culicifacies* and *An. subpictus* complexes in Sri Lanka using DNA based techniques

By

Walakada Gamage Shiromi Ariyawansha

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of Master of Philosophy in Zoology

Analysis of the genetic variations of the *Anopheles culicifacies* and *Anopheles subpictus* complexes in Sri Lanka using DNA based techniques

by

Walakada Gamage Shiromi Ariyawansha

ABSTRACT

Anopheles culicifacies s.l. is the major vector while *Anopheles subpictus* s.l. is the most important secondary vector of malaria in Sri Lanka. *An. culicifacies* is known to exist as a complex of five sibling species A, B, C, D and E in India, the neighbouring country. Karyotyping has revealed the presence of *An. culicifacies* B and E sympatric in Sri Lanka. Previous studies revealed that in Sri Lanka, sp. E is predominant and act as the vector while sp. B is less common and act as a non vector or is having a least vector potential. *An. subpictus* complex consists at least of four sibling sp. naming A, B, C and D those who could be differentiated by morphological characteristics of eggs, larvae and adults. All the members of this complex are present in Sri Lanka. Sp. B prefers saline water and sp. D prefers fresh water while sp. A and C don’t show any preferences.

Cloned Polymerase Chain Reaction (PCR) fragments of the ribosomal Deoxyribonucleic Acid (DNA) second internal transcribed spacer of available members of above species complexes were sequenced. Sequences of two complexes were analysed separately using Bio Edit Sequence Alignment Editor 6.0.5. Previously developed DNA probes were manipulated to check any difference in hybridization between *An. culicifacies* B and E DNA.
An. culicifacies B and E had identical ITS2 sequences. Phylogenetic tree generated using ITS2 sequences of An. culicifacies complex available in the web revealed that members of the complex evolving in two different lines: sp. A and D in a one lineage and sp. B, C and E in the other. Secondary structure predictions from their ITS2 region showed identical folding patterns among B, C and E as well as very similar secondary structures of A and D. Structural analogy of those secondary structures showed a functional stability of ITS2 region among An. culicifacies complex which led to a slow evolution rate of that region. Therefore, it is difficult to display genetic variation through analysis of ITS2 of An. culicifacies complex. Also hybridization with the DNA probe exhibited a similar pattern between sp. B and E.

An. subpictus complex could be categorized into two groups based on PCR assay: sp. A and C into one group and B and D into the other. Different ITS2 sequences could be seen among members. Sp. B could be clearly separated from sp. A, C and D based on the ITS2 sequence dissimilarities. Phylogenetic tree showed that An. subpictus B is evolving in a separate evolutionary line and could easily distinguish from other members of the complex.
I. TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. TABLE OF CONTENTS</td>
<td>i</td>
</tr>
<tr>
<td>II. LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>III. LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>IV. LIST OF ABBREVIATIONS</td>
<td>viii</td>
</tr>
<tr>
<td>V. ACKNOWLEDGEMENTS</td>
<td>x</td>
</tr>
<tr>
<td>VI. ABSTRACT</td>
<td>xii</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>01</td>
</tr>
<tr>
<td>1.1 Outline of the present study</td>
<td>05</td>
</tr>
<tr>
<td>2. LITERATURE REVIEW</td>
<td>07</td>
</tr>
<tr>
<td>2.1 Global malaria problem</td>
<td>08</td>
</tr>
<tr>
<td>2.2 Malaria in Sri Lanka</td>
<td>08</td>
</tr>
<tr>
<td>2.2.1 Malaria vectors in Sri Lanka</td>
<td>13</td>
</tr>
<tr>
<td>2.3 Prospects of Conquering Malaria</td>
<td>13</td>
</tr>
<tr>
<td>2.3.1 Vaccines</td>
<td>13</td>
</tr>
<tr>
<td>2.3.2 Medicines</td>
<td>16</td>
</tr>
<tr>
<td>2.3.3 Mosquito Research</td>
<td>18</td>
</tr>
<tr>
<td>2.4 Strategy of malaria vector control</td>
<td>18</td>
</tr>
<tr>
<td>2.4.1 Chemical measures</td>
<td>19</td>
</tr>
<tr>
<td>2.4.2 Bio-environmental measures</td>
<td>20</td>
</tr>
<tr>
<td>2.4.3 Biotechnological measures</td>
<td>21</td>
</tr>
<tr>
<td>2.5 Malaria vector control strategies in Sri Lanka</td>
<td>22</td>
</tr>
<tr>
<td>2.6 Analysis of the vector at species and intra-species level</td>
<td>23</td>
</tr>
<tr>
<td>2.6.1 Definition and designation</td>
<td>23</td>
</tr>
<tr>
<td>2.6.1 Importance in identification of sibling species status</td>
<td>24</td>
</tr>
<tr>
<td>2.7 Techniques used in recognition of species complexes</td>
<td>25</td>
</tr>
</tbody>
</table>
2.7.1 Morphological variations
2.7.2 Cuticular hydrocarbon profile
2.7.3 Cross-breeding experiments
2.7.4 Cytogenetic techniques
 2.7.4.1 Mitotic and meiotic karyotypes
 2.7.4.2 Examination of polytene chromosomes
2.7.5 Electrophoretic variation
2.7.6 DNA based techniques
 2.7.6.1 Diagnostic DNA probes
 2.7.6.2 Polymerase Chain Reaction (PCR) based techniques
 2.7.6.3 Restriction Fragments Length Polymorphism (RFLP)
 2.7.6.4 Single-Strand Conformation Polymorphism (SSCP)

2.8 Most important malaria vectors in Sri Lanka
2.8.1 Anopheles culicifacies complex
2.8.2 Anopheles subpictus complex

2.9 Organization and complexity of the mosquito genome
2.9.1 Genome size
2.9.2 Evolution and Molecular Archaeology
2.9.3 Repetitive DNA sequences
2.9.4 Ribosomal gene

3.0 MATERIALS AND METHODS
3.1 General buffers, reagents and stock solutions
3.2 Mosquitoes and Mosquito DNA
 3.2.1 Mosquitoes
 3.2.2 Mosquito DNA
 3.2.2.1 Reagents, buffers and enzymes for mosquito DNA extraction
 3.2.2.2 Mosquito DNA extraction
3.3 Polymerase Chain Reaction (PCR)
3.4 Cloning of the PCR products
3.4.1 Reagents, buffers, enzymes culture media, bacteria and plasmid for cloning

3.4.2 Preparing the PCR fragment for cloning

3.4.3 Preparing the plasmid vector for cloning

3.4.4 Ligation of the PCR fragment to the vector

3.4.5 Transformation

3.4.5.1 Making competent cells

3.4.5.2 Transformation of plasmid to XL 1 Blue MRF

3.5 Plasmid DNA extraction

3.5.1 Reagents, buffers and enzymes for plasmid DNA extraction

3.5.2 Mini preparation of plasmid DNA using alkaline lysis method

3.6 DNA sequencing

3.6.1 Reagents, buffers and stock solutions for sequencing

3.6.2 Sequencing of Internal Transcribed Spacer 2

3.7 Anopheles culicifacies B and E squash blot hybridization with Rp36, Rp234 DNA probes

3.7.1 Reagents, buffers and stock solutions for DNA probe method

3.7.2 Mosquito squash blots

3.7.3 Preparation of 32P labelled DNA probes

3.7.4 Pre hybridization and hybridization of nitrocellulose filter

4. RESULTS AND DISCUSSION

4.1 PCR amplification of ITS2 region

4.2 Sequencing of amplified products

4.2.1 Sequences of Internal Transcribed Spacer 2 (ITS2) of Anopheles culicifacies B and E

4.2.2 Sequences of Internal Transcribed Spacer 2 (ITS2) of Anopheles subpictus A B C and D
4.3 Analysis of ITS2 sequences

4.3.1 Analysis of ITS2 sequences of *An. culicifacies s.l.*

4.3.2 Analysis of ITS2 sequences of *An. subpictus s.l.*

4.4 Manipulation of species specific DNA probes for differentiation of *An. culicifacies E* from B

5. CONCLUSIONS

6. REFERENCES