SOME STUDIES ON PAPAYA

19. 19 5- 6 - 1

KUB 98

RINGSPOT VIRUS (PRSV)

INFECTION IN

Carica papaya L.

BY

WIJENDRA ACHARIGE SOMALATHA WIJENDRA

THESIS SUBMITTED TO THE DEPARTMENT OF BOTANY, UNIVERSITY OF SRI JAYAWARDENEPURA FOR THE DEGREE OF MASTER OF PHILOSOPHY IN BOTANY.

IN

JUNE

144895

SOME STUDIES ON PAPAYA RINGSPOT VIRUS (PRSV) INFECTION IN Carica papaya L.

BY

WIJENDRA ACHARIGE SOMALATHA WIJENDRA

ABSTRACT

Fifteen papaya virus isolates from different infected areas of the country were collected and characterized using biological, physical and chemical properties. The investigation showed that the virus infecting papaya is transmitted mechanically but not through seeds or pollen. Symptomatology, physical and chemical properties revealed that the isolates were related to PRSV-P type. However, the host range of these isolates suggested that they may be of different pathotype. The protein and non-protein nitrogen contents in the leaves of the host, Carica papaya were affected by the but the total nitrogen content remained PRSV, significantly unchanged when compared to those of healthy leaves. About one and a half times increase in non-protein and a corresponding decrease in protein nitrogen contents were detected in the inoculated leaves after three hours of inoculation. The changes

in the leaves of non-protein and protein were first detected in the mechanically inoculated leaves in three hours of inoculation. Similar effects of PRSV infection were observed in naturally infected field plants.

Was obt

Studies on fractional composition of non-proteinous nitrogen revealed that the virus had an effect on the contents of free amino acids in the infected papaya leaves. Seven amino acids: aspartic acid, glutamic acid, serine, arginine, threonine, alanine and glycine were detected by paper and thin layer chromatography techniques, in the leaves of both healthy and PRSV infected leaves. A visual increase of all amino acids except glutamic acid were observed in infected leaves when compared to healthy leaves. These changes were first detected within three hours of inoculation and the same tendency was observed at the later stages of disease development. The High Performance Liquid detected 15 amino Chromatography (HPLC) acids, including the above seven amino acids. A two fold increase in the concentration of serine, alanine, arginine, threonine and aspartic acid was observed in the leaves infected with PRSV. Methionine, valine, histidine and tyrosine contents in the infected leaves were decreased but no significant differences were found in the contents of glutamic acid, isoleucine and leucine.

xii

A mild strain of PRSV was not found among the field collection. However, a mild mutant strain, PRSV-MIII, was produced by nitrous acid treament. Papaya seedlings inoculated with this mild mutant remained symptomless. Under greenhouse conditions, protection was observed when PRSV-MIII was used to protect papaya against different challenge inoculations with a severe strain. This symptomless mutant could be used as a protection for control of PRSV.

xiii

CONTENTS

*	LIST	OF	FIGURES	v
*	LIST	OF	TABLES	vii
*	ACKNO	EDGEMENT	ix	
*	ABSTI	Г	xi	

CHA	PTER ONE	page
1.	INTRODUCTION	01

CHAPTER TWO

2.	MATERIALS AND METHODS	
	2.1. SOURCE OF INFECTED PLANTS	18
	2.2. CULTURE OF TEST PLANTS	19
	2.3. INOCULATION PROCEDURE	21
	2.4. POLLEN AND SEED TRANSMISSION TESTS	22
	2.5. THE TRANSMISSION OF PRSV BY APHIDS	22
	2.6. PHYSICAL PROPERTIES	23
	2.7. PARTIAL PURIFICATION OF VIRUS	25
	2.8. SEROLOGICAL TEST	29
	2.8.1. SDS - IMMUNODIFFUSION TEST	29
	2.8.2. ENZYME LINKED IMMUNO-SORBENT	
	ASSAY (ELISA) TEST	30
	2.9. ELECTRON MICROSCOPY	32
	2.10. DETERMINATION OF PROTEIN NITROGEN,	
	NON-PROTEIN NITROGEN AND TOTAL	
	NITROGEN CONTENTS OF HEALTHY AND	
	PRSV INFECTED PAPAYA LEAVES	34

i

2.10.1.	HARVESTING OF LEAF SAMPLES	34
2.10.2.	SEPARATION OF PROTEIN NITROGEN	
	AND NON-PROTEIN NITROGEN	37
2.10.3.	DETERMINATION OF THE NITROGEN	
	CONTENTS	38

ii

2.11. DETERMINATION OF THE COMPOSITION OF
FREE AMINO ACIDS IN HEALTHY AND
VIRUS INFECTED PAPAYA PLANTS
2.11.1. EXTRACTION PROCEDURE
39
2.11.2. SEPARATION OF AMINO ACIDS
40

2.12. CROSS PROTECTION	41
2.12.1. ARTIFICIAL INDUCTION OF PRSV	
MUTANTS FROM PRSV	41
2.12.2. EVALUATION OF A SYMPTOMLESS	
MUTANT INDUCED BY NITROUS	
ACID TREATMENT	42

2.13. CLEANING OF GLASSWARE AND APPARATUS 43

2.14. PEST CONTROL 43

CHAPTER THREE

3.	EXPER	IMENTS	AND	RESU	JLTS		; ; ; ; ; ;		44
	3.1.	ISOLAT	FION	AND	IDENTIF	ICATION	OF		
		VIRUSE	S FF	ROM	APAYA			÷	4 5

	ii	i
3.1.1. SYMPTOMAT	OLOGY 4	5
3.1.1.1. SO	URCES OF ISOLATES 4	5
3.1.1.2. TH	E EFFECT OF AGE	
OF	THE SEEDLING ON	
TH	E INFECTION OF PRSV 5	2
3.1.1.3. TH	E EFFECT OF THE	
IN	OCULATION BUFFERS ON	
. TH	E INFECTIVITY OF PRSV 5	4
3.1.1.4. PO	LLEN AND SEED	
TR	ANSMISSION TESTS 5	6
3.1.1.5. TH	IE TRANSMISSION OF	
PR	SV BY APHIDS 5	7
3.1.2. HOST RANG	E REACTIONS 5	8
3.1.3. THE INFEC	TIVITY OF PARTIALLY	
PURIFIED	PRSV 6	1
3.1.4. ELECTRON	MICROSCOPY 6	2
3.1.5. PHYSICAL	PROPERTIES 6	5
3.1.6. SEROLOGIC	CAL TEST 6	7
3.1.6.1. S	SDS-IMMUNODIFFUSION	
5	TEST 6	57
3.1.6.2. EN	NZYME LINKED IMMUNO	
SC	ORBANT ASSAY (ELISA)	
TI	EST 6	8
3.2 EFFECTS OF 1	PRSV INFECTION ON THE	
CHA PROTEIN, NOM	N-PROTEIN AND TOTAL	
NITROGEN CON	NTENTS IN PAPAYA LEAVES 6	59

	iv
3.2.1. EFFECTS OF PRSV INFECTION ON	
THE NITROGEN CONTENTS IN THE	
LEAVES OF MECHANICALLY	
INOCULATED PLANTS	69
3.2.2. EFFECTS OF PRSV ON NITROGEN	
CONTENTS IN THE LEAVES OF	
NATURALLY INFECTED FIELD PLANTS	73
3.3. THE EFFECT OF PAPAYA RINGSPOT VIRUS	
INFECTION ON THE COMPOSITION OF FREE	
AMINO ACIDS IN PAPAYA LEAVES	76
3.3.1. THE COMPOSITION OF FREE AMINO	
ACIDS IN THE MECHANICALLY	
INOCULATED PLANTS	76
3.3.2. THE COMPOSITION OF FREE AMINO	
ACIDS OF NATURALLY INFECTED	
FIELD PLANTS AT DIFFERENT	
LOCALITIES	85
3.4. CROSS PROTECTION	86
3.4.1. FIELD COLLECTION	86
3.4.2. CONDITIONS FOR MUTAGENIC	
TREATMENT	87
3.4.3. THE EFFECT OF TIME OF	
CHALLENGE INOCULATION ON	
CROSS PROTECTION	96
CHAPTER FOUR	
4. DISCUSSION	100
REFERENCES	120