

A GENETICAL STUDY OF SOME MUTANTS OF DROSOPHILA ANANASSAE; Doleschall

by

Kankanamage Sisira Jagathsiri Wijeratne

Thesis submitted in partial fulfilment of the requirements for the Degree of Master of Science of the Faculty of Applied Science, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.

116575

September, 1989.

116575

My th Labour to mal ananasi

Also, Office helped the c

I also

I wis the N at Sr

I also for b

encou

Abstractive. However, when "int" was out prossed it gave and a only Curled al <u>ABSTRACT</u> When it is inter-crossed a gave class to only "<u>onl</u>" flips and inter-crosses of Curled when flips gave rise to wild type, Curled wing and

Drosophila ananassae was used for the determination of spontaneous mutation rate in Sri Lanka in a previous study (Bogahawatte, 1984). The present work was carried out to study the inheritance patterns of four autosomal mutants and two sexlinked mutants obtained in the above study at the Dept. of Zoology, University of Sri Jayewardenepura, Nugegoda, Sri Lanka. These mutants were <u>bw</u> (brown eye), "<u>cnt</u>" (contracted wing), <u>hl</u> (hooked leg), <u>mcl</u> (marginal cel-less wing) and ct (cut wing).

This organism was selected for genetical studies as it is found locally and is easier to breed than <u>D. melanogaster</u>. Each sex-ticked mutant when our crossed of Initially some experiments were carried out with the purpose of building up double and triple mutant colonies.

Of the above mutants <u>bw</u>, "<u>cnt</u>" and <u>hl</u> are autosomal mutants and of them only brown eye (<u>bw</u>) mutant showed 100% agreement with Mendelian rules and it is concluded to be an autosomal recessive gene and the line is pure.

According to Bogahawatte (1984), "cnt" gene is autosomal

recessive. However, when "<u>cnt</u>" was out crossed it gave rise to only Curled wing flies. When it is inter-crossed it gave rise to only "<u>cnt</u>" flies and inter-crosses of Curled wing flies gave rise to wild type, Curled wing and contracted wing flies in 1:2:1 ratio. Therefore my results show conclusively that there is no "<u>cnt</u>" gene but that the "<u>cnt</u>" phenotype is simply the homozygous form of the Curled (<u>Cu</u>) gene. They also show the variable expressivity and incomplete penetrance.

5 8000Es

ge: Doc: DO

For hooked leg (<u>hl</u>) mutants, it is concluded that though it is autosomal recessive according to the inheritance pattern, it shows variable expressivity and incomplete penetrance. Their viability is also low.

The sex-linked mutants were cut wing (ct) and marginal wing (mcl) whose inheritance patterns were cell-less Each sex-linked mutant when out-crossed or complex. inter-crossed could produce mcl, ct, mclct and wild type flies in a variable frequency. In order to explain the aberrant data the following possibilities, namely, pseudoallelism, conditional mutants and movable genetic elements have been discussed. Pseudo-allelism probably is not the concept that could be used to interpret the aberrant results beause the recombinant types and wild types in the progeny appear in larger numbers than would be the case with pseudo-alleles. Also they appear in widly varying proportions in different test crosses. The concept of the

Droso spont (Bogal to st and t the I Nugego "<u>ent</u>"

This

Initial of buil Of the and o agreem an auto

Accordi

CONTENTS

ollib

1 . 10

			page
Memorand	lum		i
Acknowle	dgemen	it	ii
Abstract			iv
Contents			vii
CHAPTER	ONE		1
Introduct	ion		1
1.1 5	Signific	ance of the present study	2
	-	nce of <u>D. ananassae</u> as a test	
C	organis	m in Sri Lanka	8
1	1.2.1	Test organism	8
1	1.2.2	Spontaneous male crossing-over	11
1	1.2.3	Chromosomal polymorphism	11
1	1.2.4	Karyotype	13
1	1.2.5	Polytene chromosomes	14
1	1.2.6	Sexual isolation	15
1	1.2.7	Segregation distortion	16
1	1.2.8	High mutability	17
1	1.2.9	Extrachromosomal inheritance	17
a. 1	1.2.10	Parthenogenesis	18
3 1	1.2.11	Y-4 linkage of nucleous organizer	18
	1.2.12	Short generation time	18

- viii -	
	Page
1.2.13 Small body size	19
1.2.14 Culture of large numbers	19
1.2.15 Detailed genetic maps	20
1.2.16 Stocks for genetic tests	20
1.2.17 Fewer number of chromosomes	20
1.2.18 Cytological studies	21
1.3 Description of mutants	22
1.3.1 Autosomal recessive mutants	23
1.3.2 Autosomal dominant mutants	30
1.3.3 Sex-linked recessive mutants	34
1.4 Objective of the present study	39
CHAPTER TWO	41
Materials and Methods	41
2.1 The life cycle of D. ananassae	41
2.2 Morphology of adult <u>D. ananassae</u>	48
2.3 Culture of Drosophila ananassae	55
2.4 Experimental procedure	60
CHAPTER THREE	67
Results	67
3.1 Autosomal recessive mutants	68
3.1.1 mutant type x wild type	68
3.1.2 mutant type x mutant type	70
3.2 Autosomal dominant mutants	74
3.2.1 mutant type x wild type	74

Conte

1.2

		Page
	3.2.2 mutant type x mutant type	77
3.3	Sex-linked recessive mutants	81
	3.3.1 mutant type x wild type	81
	3.3.2 mutant type x all other mutant types	89
3.4	Crosses between autosomal recessive mutants	0.0
	and autosomal dominant mutants	98
3.5	Crosses between autosomal recessive mutants and sex-linked recessive mutants	108
3.6	Crosses between autosomal dominant and	
	sex-linked recessive mutants	129
3.7	Double mutant crosses	147
		4.05
CHAPTER FO	DUR	165
Discussion		165
4.1	Autosomal recessive mutants	165
4.2	Autosomal dominant mutants	166
4.3	Sex-linked recessive mutants	168
	4.3.1 Pseudo allelism	171
	4.3.2 Conditional mutants	172
	4.3.3 Movable genetic elements	174
5.0	Summary	176
References		177

CHAP

2. 2. 2. 2. - ix -