Food value and some antinutritional components of *Canavalia gladiata* (Sinh. - *awara*)

by

Sagarika Ekanayake

Thesis submitted to the University of Sri Jayawardenapura for the award of the degree Master of Philosophy in Biochemistry on Food and Nutrition.
ABSTRACT

The bean of the leguminous plant Canavalia gladiata (Sinhala- awara) is consumed as a vegetable when the pod is tender. The mature seed is also utilised in a variety of ways but not very frequently. However, in spite of desirable agronomical features the seeds are not extensively utilised as a food. This study focussed on the determination of food value and the anti-nutritional factors of mature seeds with an aim at increasing utilisation.

The study included the investigation of chemical composition and nutritional value of raw whole material and cotyledon fraction of Canavalia gladiata seeds. The determination of the chemical composition included moisture, ash, crude protein and crude fat by the AOAC methods. All values are given on dry weight basis. Flour of the whole mature seed and cotyledon contained, crude protein 26.79 and 29.18%; fat 2.76 and 3.11% and ash 3.95 and 4.32 respectively.

The soluble and insoluble dietary fibre determined by the method of Asp et al. of whole seed and cotyledon was 33.16 and 10.23% while carbohydrate content determined by difference was 33.34 and 53.16% respectively. In the whole seed and cotyledon flour, the energy content was 1,108.3 and 1,492.3 kJ/100g (263.9 and 355.3 kcal/100g) respectively; starch content (by enzymatic colourimetric method) was 30.73 and 39.6% respectively and low molecular weight carbohydrate content (determined...
by TLC and high performance anion exchange chromatography) was 27.7 and 34.6 mgg\(^{-1}\) respectively. Sucrose represents the highest fraction of low molecular weight carbohydrates with fructose being the lowest in both types of flour.

The mineral content, using an analyser with induction coupled plasma emission spectroscopy and amino acids following protein hydrolysis were also determined. Mineral analysis showed K, Mg, Ca, P and S to be present in high quantities. The essential amino acid profile compared well with FAO/WHO recommended pattern except for low sulphur containing amino acids, cysteine and methionine.

The nutritional quality of protein was evaluated by biological assay using a rat model and also by \textit{in vitro} digestibility also by the method developed by Satterlee \textit{et al.} for comparison. Evaluation of the biological value (BV), net protein utilisation (NPU) and true digestibility (TD) of raw and processed samples of cotyledon and whole seed flour was carried out with Sprague-Dawley rats. The weight gain during the biological assay of the raw whole seed and cotyledon fed groups were significantly lower \((p < 0.05)\) than the reference group. The weight gain was higher with autoclaved and roasted cotyledon than raw seed diets. The NPU of both raw and processed seed diets were significantly lower \((p < 0.05)\) than the reference group.

The study indicates:

Similarly, BV of processed samples were significantly lower \((p < 0.05)\) than that of raw cotyledon. In contrast, TD increased with processing. However, the \textit{in vitro}
protein digestibility for the whole seed sample and cotyledon was 71.73% and 70.08% respectively. *In vitro* starch digestibility of raw (whole seed and cotyledon) roasted and autoclaved cotyledon flour was carried out by the method of Holm *et al.* The autoclaved sample had the highest digestibility.

A trypsin inhibitor and an α-amylase inhibitor were present in the seed coat and phytate content was higher in the cotyledon fraction. The approximate molecular weight of the trypsin inhibitor was found to be 90 kD.

Testing of the effect on pregnancy by consumption of a *Canavalia gladiata* whole seed flour diet (20% substitution of protein in the normal diet) was carried out using a mouse model. The effect on pregnant mice fed a raw *Canavalia* whole seed flour diet showed a significant lowering (p = 0.016) of the gestation period.

Scanning electron micrographs of raw seed showed that the starch granules are covered with a protein capsule. The gel permeation chromatogram of cotyledon flour starch using Sepharose CL-2B indicated the presence of both high molecular weight and low molecular weight carbohydrates.

The study indicates that the cotyledon seed flour may be a good supplement for cereal based diets. Processing and removal of the seed coat reduces trypsin and α-amylase inhibitor activity. Though there was a significant reduction (p = 0.016) in the gestation
in the study the litter were healthy. However, it cannot be concluded that there is no effect on pregnancy without more intensive studies.

Food value and some antinutritional components of Canavalia gladiata (Sinh. - awara)

Sagarika Ekanayake

ABSTRACT
Contents

List of Tables
VII
List of Figures
IX
List of Plates
XI
ACKNOWLEDGEMENTS
xii
ABSTRACT
xiii

1 INTRODUCTION

1.1 Background
1
1.2 Justification and scope of thesis
4

1.2.1. Chemical composition of raw *Canavalia gladiata* mature seeds
5
1.2.2. Nutritional quality
5
1.2.3. Anti-nutritional factors
6
1.2.4. Some physico-chemical properties of starch
6

2 LITERATURE REVIEW

2.1 Introduction
7
2.2 Morphology
11
2.3 Uses
13
2.4 Chemical composition of the seed
14

2.4.1. Moisture and ash
14
2.4.2. Carbohydrates
15
2.4.3. Protein and amino acids
19
2.4.3.1. Nutritional quality

2.4.4. Fat
2.4.5. Vitamins and minerals

2.5 Anti nutritional components

2.5.1. Concanavalin A
2.5.2. Toxic amino acid
2.5.3. Polyamines
2.5.4. Protease inhibitors
2.5.5. Saponins
2.5.6. Other factors

3 MATERIALS AND METHODS

3.1 Chemicals, water and glassware
3.2 Plant material
3.3 Proximate composition

3.3.1. Moisture
3.3.2. Ash
3.3.3. Nitrogen and protein
3.3.4. Fat

3.4 Energy
3.5 Dietary fibre
3.6 Starch
3.7 Low molecular weight carbohydrates

3.7.1. Quantification
by high performance anion exchange
3.7.2. TLC and paper chromatography

3.8 Digestible and non digestible carbohydrate content

3.8.1. Acid hydrolysis (digestible and non digestible)
3.8.1.1. Chemical (Nelson, 1944) method 47
3.8.1.2. Enzymatic assay 47

3.8.2. Enzyme hydrolysis (digestible) 48

3.9 Mineral content 49

3.10 Amino acids 49

3.10.1. Hydrolysis of proteins 50

3.10.1.1. Acid hydrolysis 50
3.10.1.2. Performic acid oxidation 51
3.10.1.3. Enzymatic hydrolysis 52

3.10.2. Amino acid analyser 53

3.10.2.1. Preparation of the column 53

3.10.3. Amino acid score 54

3.11 Nutritional quality of seed starch and protein 55

3.11.1. Animal experiments 55

3.11.1.1. Animals and housing 55
3.11.1.2. Diets 56

3.11.2. In vitro protein digestibility 57

3.11.3. In vitro digestibility of starch 59

3.12 Scanning Electron Microscopy 60

3.13 Gel filtration chromatography 61

3.14 Anti-nutritional properties 62

3.14.1. Phytate 62
3.14.2. α-Amylase inhibitor 63
3.14.3. Trypsin inhibitor activity 65

3.14.3.1. Molecular weight determination 66
3.14.4. Testing for abortive effect

3.14.4.1. Vaginal smearing
3.14.4.2. Diet

3.14.5. Saponins

3.14.5.1. Froth test
3.14.5.2. Hemolysis test
3.14.5.3. Thin layer chromatography
3.14.5.4. Soxhlet extraction and preparative TLC

3.15 Statistical analysis

4 RESULTS

4.1 Proximate composition
4.2 Dietary fibre and energy content
4.3 Starch and low molecular weight carbohydrates
4.4 Digestible and non-digestible carbohydrate concentrate
4.5 Mineral content
4.6 Amino acid content
4.7 Nutritional quality of seed starch protein

4.7.1. Animal experiments
4.7.2. In vitro protein digestibility
4.7.3. In vitro starch digestibility

4.8 Scanning electron microscope
4.9 Gel chromatography
4.10 Anti nutritional properties
4.10.1. Phytate 98
4.10.2. α-Amylase inhibitor activity 98
4.10.3. Trypsin inhibitor activity 103
4.10.4. Testing for abortive effect 105

4.10.4.1. Diets 105
4.10.4.2. Vaginal smearing 105
4.10.4.3. Weight gain and feed intake during gestation 105
4.10.4.4. Data on litter 109
4.10.4.5. Toxic effects on organs 109

4.10.5. Saponins 113

5 DISCUSSION 114

Physical characteristics 114
Proximate composition 114
Dietary fibre and energy content 116
Starch and low molecular weight carbohydrates 116
Digestible and non digestible carbohydrates 118
Mineral analysis 119
Amino acids 119
Nutritional quality of starch and protein 120

Animal experiments 120
In vitro protein digestibility 125
In vitro starch hydrolysis 126

Scanning electron micrographs 128
Gel permeation chromatography 129
Anti-nutritional properties 130

Phytate content 130
Table 2.1

- α-Amylase inhibitor activity
- Trypsin inhibitor activity
- Testing for abortive effect

Table 2.2

- Diet changes
- Vaginal smearing
- Weight gain and the feed intake during gestation
- Data on litter
- Toxic effects on organs of dam

Saponins

Table 2.4

6 CONCLUSION

Further studies

7 REFERENCES