

ECONOMIC EVALUATION OF SELECTED ENVIRONMENTAL IMPACTS OF SAMANALAWEWA HYDRO ELECTRIC PROJECT

8.3000

BY

E. P. N. Udaya Kumara B. Sc. (Agric) Hons.

Thesis submitted in partial fulfillment of the requirement for the Degree of Master of Science (Forestry and Environmental Management).

168810

Department of Forestry and Environmental Sciences, Faculty of Post Graduate Studies, University of Sri Jayewardenepura, Nugegoda,

> Sri Lanka. September, 2002

ABSTRACT

The Samanalawewa Hydro Electric Project and its water commanding area is the subject of this study. This project is a single purpose hydropower project, which harnesses the waters of the Walawe Ganga by damming the river at the confluence of the Belihul Oya and Walawe Ganga at an elevation of 400m Mean Sea Level. The reservoir covers an extent of 897 ha at normal high water level and its catchment covers an area of 341.7 km².

As this was a single purpose project, much attention was not paid to other aspects such as supplying irrigation water for down stream and other environmental impacts. Therefore this study sought to estimate the economic loss due to the reduction of land area and paddy yield at selected down stream areas. In addition, it aims to estimate the economic value of lost carbon sequestration function of the Samanalawewa reservoir submerged area and to carry out an extended Cost/Benefit analysis for the Samanalawewa project.

Primary and secondary data were used for this study, which involved a farm household survey. This research disclosed that the scarcity of water due to the dam has resulted in 11.64% of yield reduction (equivalent to 36944.38 bushels or Rs.10.5 million) and 24.89% of land become uncultivated (equivalent to 404.27 acres or Rs.11.7 million) annually. The global warming damage costs due to the lost carbon sequestration function of the submerged area is estimated to be \$ 2046579.1 annually. The estimated economic value of surplus water in terms of foregone power generation from the leak at paddy harvesting periods (April, September and October) is Rs. 95.33 million.

CONTENTS

Contents	Ι
List of tables	VI
List of figures	VII
List of plates	VIII
List of maps	IX
List of abbreviations	Х
Acknowledgement	XI
Dedication	XII
Abstract	XIII

CHAPTER 1

INTRODUCTION

1.1	Samanalawewa Hydro Electric Project (SHEP)	
1.2	Geographical Setting	2
1.2.1	Physical Landscape	
1.3	1.3 Background to the Samanalawewa Hydro Electric Project and	
	Leak of the reservoir	5
1.3.1	Financial arrangements	5
1.4	Environmental issues at the Samanalawewa Hydro	
	Electric Project	6
1.5	Significance and justification of study	7
1.6	Objectives of this research	11

CHAPTER 2

LITERATURE REVIEW

2.1	Fundamentals of environmental economics	12
2.1.1	Definition of Environmental Economics and the Role of Economics	13
2.1.2	Scope of Environmental Economics	15
2.2	Theory of Economic Valuation	18
2.2.1	Techniques of Economic Valuation for Environment	20

2.3	Economic feasibility of the project	
2.3.1	Net Present Value (NPV)	25
2.3.2	Internal Rate of Return (IRR)	26
2.3.3	Benefit Cost Ratio (B/C)	27
2.4	Environmental Issues of hydropower projects	28
2.4.1	Land use and resettlement impacts of hydro power plants	29
2.4.2	Deforestation due to hydropower projects	30
2.4.3	Air quality impacts	31
2.4.4	Acid Rain	32
2.4.5	Global Warming	32
2.4.6	Biodiversity	33
2.4.7	Other impacts at hydro sites	33

CHAPTER 3

METHODOLOGY

3.1	Estimation of economic loss due to reduction of paddy			
	yields and land area at selected down stream areas due to			
	damming in 1992	35		
3.1.1	Data collection	35		
3.1.2	Statistical methods	36		
3.1.3	Due to the dam, yield reduction (Bushels/Year)	37		
3.1.4	Due to the dam, Land reduction (Acres/Year)	39		
3.1.5	Calculation of economic value	40		
3.2	Estimation of economic value of the lost carbon			
	sequestration function of the Samanalawewa reservoir			
	submerged area	42		
3.2.1	Background	42		
3.2.2	Natural region	42		
3.2.3	Study area	44		
3.2.4	Data collection	44		
3.2.5	Calculation of economic value	44		
	Vieres 2			
	П			

3.3	Estimation of economic value of surplus water from the leak		
	(During the paddy harvesting period) at selected down stream		
	areas	47	
3.3.1	Data collection	49	
3.3.2	Calculation of economic value of surplus eater of the leak	50	
3.4	Cost /Benefit analysis for the Samanalawewa project	52	
3.4.1	Principles and procedures	53	
3.4.2	Project costs	53	
3.4.3	Project benefits	53	
3.4.4	Economic analysis	54	
3.4.5	Sensitivity analysis	54	

and the second

CHAPTER 4

RESULTS

2.1

n n n n n n

5

M .2

4.1	Estimation of economic loss due to reduction of paddy			
	yields (Bushels/Year) and land area (Acres/Year) at			
	selected down stream areas due to damming in 1992	55		
4.1.1	Due to the dam, yield reduction (Bushels/Year)	55		
4.1.2	Due to the dam, land reduction (Acres/Year)	56		
4.1.3	.1.3 Results of the informal discussions held with villagers and officers			
4.2	4.2 Estimation of economic value of the carbon sequestration			
	function of the Samanalawewa reservoir submerged area	60		
4.3 Estimation of economic value of surplus water from the leak				
	(During the paddy harvesting period) at selected down stream			
	areas	61		
4.3.1	Estimation of economic value of lost hydropower generation in 2001	62		
4.4	Costs/Benefits analysis for the Samanalawewa project	62		
4.4.1	Project costs	62		
4.4.2	Project benefits	63		

CHAPTER 5

DISCUSSION

5.1	Estimation of	economic loss due to reduction of paddy yields	
	(Bushels/Year	r) and land area (Acres/Year) at selected down	
	stream areas c	lue to damming in 1992	66
5.1.1	Comparison o	of the present estimates with other studies	67
5.2	Estimation of	f economic value of the carbon sequestration	
	function of the	e Samanalawewa reservoir submerged area	68
5.2.1	Comparison c	of the present estimates with other studies	69
5.3 Estimation of economic value of surplus water from the leak			
	(During the p	baddy harvesting period) at selected down stream	
	areas		69
5.4	Cost benefit an	alysis for the Samanalawewa project	70
5.5	Further research	ch	70
CHA	PTER 6		
CON	CLUSION		72
CHA	PTER 7		
RECO	OMMENDAT	IONS	73
CHA	PTER 8		
REFI	ERENCES		74
APPE	ENDIXES		
APPE	NDIX -1	Total project cost	70
AIII		Total project cost	/0
Арри	ENDIX - 2	Normal probability curves	70
		Normal probability curves	19
АРРИ	ENDIX - 3	Figure 3.1 Time series plot for reservoir leak	
	- INFAIR U	(MCM) 1997 -2001	80
		Figure 3.2 Time series plot for irrigation	02
		requirement (MCM) 1997-2001	82
		requirement (1410141) 1777-2001	03