183312 ~ w

R. 3000L

EFFECT OF CROP-LIVESTOCK INTEGRATION ON SOME SOIL AND PLANT PROPERTIES AND COMPOSITION

BY

D. SENARATNA

A DISSERTATION SUBMITTED TO THE UNIVERSITY OF SRI JAYAWARDENEPURA FOR THE DEGREE OF MASTER OF SCIENCE

2005 183312

ABSTRACT

A preliminary survey was conducted at three integrated farming systems to determine the effect of long term (>25 years) crop-livestock integration on some soil and plant properties and composition. Herbage of grazed coconut land consisted of 90.6% grasses, 5.7% legumes and 3.7% other species where Carpet grass (*Axonopus compresses*) was the dominant species. The species diversity of the natural herbage of ungrazed coconut land was high representing 36.78% grasses, 29.86% legumes and 36.32% other species having more erect type plant species with Narrow Leaf Carpet grass (*A. affinis*) dominating. Long term grazing effect resulted to promote dominating prostate type plant species such as Carpet grass (*Axonopus compresses*), Heen undupiyaliya (*Desmodium trifolium*) due to super imposed grazing pressure.

The effect of buffalo grazing the natural herbage growing in a coconut plantation was examined in an experiment of 6 months along with the survey. The Dry Weight Rank Method (DWRM) which gives an accurate estimate of the plant composition (PC) of grassland on dry weight basis, without the necessity of cutting and hand separating (HS) samples was used in estimating the PC. The DWRM was tested 5 times by comparing results with those of HS samples. With each of the five tests conducted, the r^2 increased from 0.1348 to 0.8922 indicating greater ability to accurately predict HS data using the simple DWRM observations. For all observations r^2 was 0.65 (p<0.05) giving a positive correlation and that regression was used to predict HS using DWRM data to study the PC of the herbage. PC of natural herbage under short term grazing indicated that as there was selective grazing and the ability to withstand grazing differed between species, with the time of grazing prostate type plant species dominated. At any time of the grazing. Heen undupiyaliya (*Desmodium trifolium*) and Narrow-leaf carpet grass (*Axonopus affinis*) presented more than 10% of the herbage and significant (p<0.05) indicating that short term grazing enhances the growth of prostate type plants.

Comparatively Dry matter (DM) and Organic matter (OM) yields of the herbage in each harvest were low in grazed herbage compared with the ungrazed herbage in both dry and wet seasons. Significantly (p<0.05) highest DM and OM yields were recorded in ungrazed

i

treatment during wet season. Due to selective grazing of more palatable herbage and over maturity of remaining plant species, Crude Protein (CP%) of grazed herbage was significantly low (p<0.05) than in ungrazed herbage.

Soils collected from long term integrated farming sites had a significantly higher (p<0.05) average pH of (5.58) as compared to that of non integrated sites (4.65). Reduction of acidity may be due to the improvement of soil nutrients via dung, urine and also due to accumulation of litter. Also it was visually observed that the soil in integrated sites were dark in colour as compared to non integrated soil due to the same reason. Bulk density of integrated soil (1.15 g/cm³) was comparatively lower with that of non integrated soil (1.4 g/ cm³). Although not significantly (p<0.05), the moisture content improved in grazing coconut land due to improved ground cover as compared with ungrazed soil specially during wet season. Significant improvement was not observed because of the overriding effect of the shade of coconut trees facilitating the retention of moisture under both conditions. Similarly soil porosity also improved due to integration. Even though the effect of long term grazing improved physical properties of soil, short term grazing effect has not changed the same as such.

Overall results suggest that the waste materials such as excreta, beddings, dairy washings and residues of feeding materials thus produce various benefits with passage of time showing potential for the sustainability of a crop- livestock systems and also buffaloes can be introduced to weedy coconut plantations as environmentally friendly biological loan movers for better sustainability.

CONTENTS

	PAGE
BSTRACT	I_II
CKNOWLEDGEMENT	III
BBREVIATIONS	III IV-V
IST OF CONTENTS	VI-X
IST OF TABLES	VI-X XI
IST OF FIGURES	XII
IST OF APPENDIX TABLES	XII-XIV
ECLARATION	XV
UPERVISOR'S SERTIFICATE	XVI
EDICATION	XVII
	21.11
HAPTER 1	1-3
1.1 Introduction	1
1.2 Justification	2-3
1.3 Objectives of the research	3
HAPTER 2 – LITERATURE REVIEW	4-32
2.1 Livestock management systems	4-5
2.1.1 Different livestock production systems	5-6
2.1.2 Role of livestock in farming systems	7
2.2. Soil characteristics of tropical farming environment	7-11
2.2.1. Animal manure and soil fertility	11-12
2.2.2 Grazing and the edaphic environment	12-17

C

2.2.3 Over grazing effect on rangeland soil properties	17
2.2.4 Impact of cattle and forage management on	
soil surface properties	17-18
2.3. Crop residues and nutrient cycling	18-20
2.4 Optimizing climate-soil-pasture-cattle interactions	21
2.5 Livestock rearing under coconut	21-23
2.5.1 Environmental factors in the pasture-cattle-coconut	
system	23-24
2.5.2 Disadvantages of livestock rearing under	
coconut	24-25
2.5.3 Economics of cattle under coconut	25
2.5.3.1 Coconut, cattle and small farm	
operations	26-27
2.5.4 Identified problems in the pasture-cattle-	
coconut system	27
2.5.5 Suitable pasture species	28-29
2.5.6 Understory weed management in coconut	
lands	29
2.5.6.1 Major weeds in mature plantations	29-31
2.5.6.2 Weed management in mature	
plantations	31
2.5.6.3 Grazing as a weed management method	32
2.6 Lessons from other integrated systems	32
CHAPTER 3 – Materials and Methods	33-44
3.1 Location and climatic conditions	33
3.1.1 Coconut-pasture-cattle system	33-34
3.1.2 Medium scale crop livestock integrated farm	34
3.1.3 Smallholder crop livestock integrated farm	34-35
3.1.4 Ungrazed coconut plantation	35
3.2 Experimental procedure of the survey	36

	30
3.2.1 Collection of soil samples	37
3.2.2 Determination of soil physical properties	37
3.2.2.1 Determination of Bulk density	51
3.2.2.2 Determination of True density/	27.28
Specific gravity of soil	37-30
3.2.2.3 Determination of the Porosity	38
3.2.2.4 Determination of soil pH	38
3.2.2.5 Determination of Moisture Content	38-39
3.2.3 Determination of the Plant species Composition	39
3 3 Experimental procedure of the Designed Experiment	40
3 3 1 Experimental site	40
3 3 2 Experimental Design	40
2 2 3 Treatments	40
2.2.4 Methodology of the Research	41
3.3.4 1 Dry Weight Rank Method (DWRM)	41-42
3.3.4.1.1 Testing the adaptability of DW	RM
to tropical pastures	42
3.3.4.1.2 Determination of the plant spe	cies
Composition by DWRM	42
3 3 4 2 Estimation of the Herbage Quality	43
3.3.4.2.1 Estimation of the Herbage	
Dry Matter Yield (DMY)-	
Qualitative	43
3.3.4.2.2 Dry matter content – Quantita	ative 43
3 3 4.2.3 Total ash content	43
3 3.4.2.4 Organic matter content	43
3.3.4.2.5 Crude protein content	44
3 3 4 3 Determination of the selected Soil Phy	ysical
Properties	44

3.3.4.4 Statistical Analysis	44
3.3.4.4.1 Analysis of the Data of the	
Preliminary Survey	44
3.3.4.4.2 Analysis of the Data of the	
Designed Experiment	44
CHAPTER 4 – RESULTS AND FINDINGS	45-66
4.1 Preliminary Survey	45
4.1.1 General Features of the Farms	45
4.1.1.1 Coconut-pasture-cattle system	45
4.1.1.2 Medium scale crop-livestock integrated	
farm (Dissagawila)	46-48
4.1.1.3 Smallholder integrated farm	48
4.1.1.4 Ungrazed coconut plantation	49
4.1.2 Effect of integration on soil physical properties	49-51
4.1.3 Effect of crop-livestock integration on Plant species	
Composition	52
4.1.3.1 Effect of different experimental treatments	5
with and without integration in a coconut	
plantation	52-53
4.1.4 Plant species composition and uses of plants	54
4.1.4.1 Medium scale integrated farm	54
4.1.4.2 Small scale integrated farm	55-56
4.2 Designed Experiment	57
4.2.1 Comparison of HS method and DWRM	57-58
4.2.2 Effect of different experimental treatments; with an	nd
without integration on the natural herbage	59
4.2.2.1 Plant species composition	59-60
4.2.2.2 Comparison of the botanical composition	L
before and during the experiment	61
4.2.2.3. Dry Matter Yield	62-63

4.2.2.4. Organic Matter Yield	63-64
4.2.2.5. Correlation between Dry Matter Yield and	
Organic Matter Content (%)	64
4.2.2.6 Crude Protein Contents of herbage	
before and after grazing	65
4.2.3 Effect of different experimental treatments	
on soil physical properties	66
(with integration	
CHAPTER 5 – DISCUSSION	67-70
CONCLUSION	71
REFERENCES	72-80
APPENDIX	81-117

х

1