REE SPECIES IN SEEDLING LEAF STRUCTUF RELATION TO THEIR SUCC NAL STATUS AND KAN RAIN FOREST.

RS-5000/-

ΒY

SUDUHA UGE BANDUMALA

Thesis submitted the University of Sri Jayewardenepura for the award of the Deee of Master of Philosophy in Forestry on Tropical ForesEcology. 184226

ST.

SEEDLING LEAF STRUCTURE OF TREE SPECIES IN RELATION TO THEIR SUCCESSIONAL STATUS AND CANOPY POSITION IN A SRI LANKAN RAIN FOREST.

RS - 5000 /-

BY

SUDUHAKURUGE BANDUMALA

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of Master of Philosophy in Forestry on

Tropical Forest Ecology.

184226

SEEDLING LEAF STRUCTURE OF TREE SPECIES IN RELATION TO THEIR SUCCESSIONAL STATUS AND CANOPY POSITION IN A SRI LANKA RAIN FOREST. Suduhakuruge Bandumala

ABSTRACT

Many comparative studies have showed interspecific differences in physiological, anatomical and morphological traits of plants. These aspects may be combined, and interactively influence the establishment of tree seedlings under natural conditions. However, few studies have combined these aspects (physiology, morphology and growth performance) at the whole plant level. This study examined the seedling growth performance and leaf level anatomical, physiological and morphological differences in relation to species successional stage and mature tree crown position within a range of simulated shade environments. The findings of this study are important for developing silvicultural guidelines for restoration and sustainable management of tropical rain forests.

For this study, three canopy species, four subcanopy species, seven understorey species, and six pioneer species were selected. All coexist in the rain forest of southwest Sri Lanka. Seedlings were grown for two years in replicated shade houses which were designed to create shade treatments that represented a range of light quantity (photosynthetic photon flux density (PPFD) and quality (red : far red ratios) found within the Sinharaja forest. Seedling height and mortality were recorded at three months intervals. After one and half years of seedling growth, leaf photosynthesis and stomatal conductivity were measured and leaf cross sections taken for anatomical measurements. Digital graphs of leaves were taken for leaf morphology measurements. After two years of growth, seedlings were uprooted and dried at 80 °C and dry mass recorded for root, stem and leaves.

Mass ratios (Mass of plant part divided by total mass) were calculated for leaves (LMR), roots (RMR), and stem (SMR). Results showed significant differences in seedlings of climax and pioneer species in growth morphology, leaf physiology, and anatomy. Pioneer species have higher plasticity values for seedling growth (height increment, root collar diameter increment, total dry mass, stem mass ratio, root mass ratio), leaf anatomy (leaf blade thickness, upper epidermis, lower epidermis) leaf physiology (net photosynthesis, stomatal conductance) and leaf morphological characters (leaf number, specific leaf area, and stomatal density) in relation to variation in shade. This study also revealed that patterns of various seedling growth, leaf anatomical, morphological, and physiological attributes that were related to the mature tree canopy position of the seedlings. Canopy species showed higher plasticity values for height increment, leaf mass ratio, upper epidermis, net photosynthesis, leaf dry mass, leaf area and specific leaf area. Subcanopy species had higher plasticity values for root collar diameter, total dry mass, stem mass ratio, root mass ratio, palisade layer thickness and lower epidermis. Understorey species showed the lowest plasticity values for most of the measured attributes. It can be concluded that medium shade (350 μ molm⁻²s⁻¹) and light shade (800 μ molm⁻²s⁻¹) favour the optimum growth of most of the species studied..

TABLE OF CONTENTS

TABLE OF CONTE	ENTS	i
LIST OF TABLES.		iv
LIST OF FIGURES	- 	vii
LIST OF PLATES		
ACKNOWLEDGEMENTS		
ABSTRACT		xviii
CHAPTER 1:	INTRODUCTION	1
	1.1 General Introduction and Objectives	2
CHAPTER 2:	LITERATURE REVIEW	9
	2.1 Tropical rain forest	10
	2.2 Plants responses to gaps	12
	2.3 Light environment	15
	2.4 Seedling growth performance	18
	2.5 Leaf anatomy	21
	2.6 Plant physiology	23
	2.7 Seedling morphology	28
CHAPTER 3:	STUDY DESCRIPTIONS	33
	3.1 Study objective and hypotheses	34
	3.2 Study site	35
	3.3 Study species	36
CHAPTER 4:	METHODS AND MATERIALS	40

i

	4.1 Experimental design	41
	4.2 Seedling establishment in the shelters	41
	4.3 Seedling growth performance experiments	44
	4.4 Leaf anatomy experiments	45
	4.5 Leaf physiology experiments	45
	4.6 Leaf morphology experiment	47
CHAPTER 5:	SEEDLING GROWTH PERFORMANCE RESULTS	49
	5.1 Seedling growth performance	50
	5.2 Seedling growth	55
	5.3 Whole seedling dry weight gain and allocation to roots	70
CHAPTER 6:	LEAF ANATOMY RESULTS	99
	6.0 Leaf Anatomy	100
	6.1 Leaf blade structure	100
	6.2. Stomatal density and pore length	123
CHAPTER 7:	LEAF PHYSIOLOGY RESULTS	136
	7.0 Seedling physiology	137
	7.1 Photosynthesis	137
	7.2 Stomatal conductance	147
	7.3 Nitrogen use efficiency	156
CHAPTER 8:	LEAF MORPHOLOGY RESULTS	160
	8.0 Seedling morphology	161
	8.1 Seedling leaf morphology	161
CHAPTER 9:	DISCUSSION	187

	9.1 Difference in seedling growth performance	188
	9.2 Difference in leaf anatomy	190
	9.3 Difference in leaf physiology	191
	9.4 Difference in leaf morphology	193
	9.5 Species differences	195
CHAPTER 10:	CONCLUSION	207
REFERENCES		210
APPENDICES 01	PHOTOGRAPHS	225
APPENDICES 02	PUBLICATIONS	267

