87722 P.D. 24.3.83.

SOME MICRO-BIOLOGICAL STUDIES OF THE MILK-CURD OF SRI-LANKA

BY

YUTHIKA HEMAMALA ABEYAGOONASEKERA

PT 2100 433

THESIS SUBMITTED FOR THE DEGREE OF MASTER
OF SCIENCE.

87722 APRIL 1981.

DEPARTMENT OF BIOLOGICAL SCIENCES,
UNIVERSITY OF SRI JAYEWARDENEPURA,
SRI-LANKA.

ABSTRACT

An investigation carried out to identify the micro-organisms present in milk-curd transported to Colombo from different areas of Sri-Lanka revealed the invariable presence of streptococci, lactobacilli and yeast in all the samples tested.

able to curdle milk in pure cultures with an accompanying change in the pH of the milk from 6.8 to about 4.0. The rates of acid production and the final pH reached by streptococci and lactobacilli were different. Relative abundance of streptococci and lactobacilli in curd also changes with the maturation of the curd indicating the higher acid tolerance of the lactobacilli.

Identification experiments done as described by M. Elisabeth Sharpe, revealed that all bacterial strains belonged to the group of lactic-acid-bacteria. Those identified were two strains of Streptococcus lactis, four strains of Thermobacteria and two strains of Betabacteria.

When pure cultures of streptococci and lactobacilli were inoculated into milk or into an artificial medium of pH 6.8-7.0, the lactobacilli

showed a prolonged initial lag period which was not observed with streptococci. This and similar observations led to the assumption that the lactobacilli were relatively more acidophilic compared to the streptococci.

their preferred pH range and always occurred together in commercially available curds. The efficiency of acid production in milk, by Streptococcus lactis and the thermobacterial strain (B) were tested separately and in combination to investigate whether there was a cumulative effect. However, neither a stimulatory nor an inhibitory effect on each others rates of acid production was observed when they were grown in combination.

The methods of E.W. Beech et. al. (4)

were used in the identification of yeasts present

in milk. These identifications were confirmed

with the help of the Food Research Institute,

Colney Lane, Norwich, U.K. Strains identified

were Candida parapsilosis and C. Krusei.

None of the yeast strains grew in pure cultures in milk, other than when in combination with bacteria. It seems to be that milk alone does not provide a suitable medium for the growth of the yeasts. The yeasts did not ferment lactose and perhaps they depend on bacterial hydrolysis of

lactose or other compounds for their carbon source,
However, even in the absence of bacteria the yeast
strains were capable of growing in milk to some
extent if the pH of the milk was lowered.

Streptococcus lactis strain apparently had very little effect on enhancing the growth of bacteria. However, the growth of yeasts in combination with the thermobacteria apparently had a stimulating effect on the growth of the bacteria. This possibility, however has to be investigated further.

The rates of alcohol production of the yeasts isolated were studied using an Eubilliometer. Significant differences in the efficiency of alcohol production by the different yeasts were observed.

An analysis of variance of the data confirmed that a significant difference exists at least between some of the types tested.

Experiments were carried out to isolate and identify as many as possible different flavour compounds occurring in the milk-curds using curd samples prepared with S. lactis and thermobacteria.

Gas-liquid chromatographic analysis of
the flavour extracts showed that ethanol and ethylacetate were present in both extracts. Thin layer
chromatographic analysis revealed the presence of

butanal, propanone and ethanal, and the absence of methanal pentanal and butanone in the flavour extracts. It was also observed that some of the flavour compounds differed quantitatively in extracts made with Streptococcus lactis and thermobacteria.

A consumer preference/difference test was carried out with a taste-panel using curds prepared by a Streptococcus lactis strain and a thermobacterial strain. The taste-panel was of unanimous opinion that there was a difference between the curd samples.

contain both bacteria and yeasts a Ranking test
was also conducted with the taste-panel using curds
prepared with different combinations of the isolated
micro-organisms. The results indicated that the
taste-panel preferred the laboratory-prepared curd,
using different combinations of the isolated microorganisms to the commercially prepared curd, and
also that the best curd sample was prepared by using
a single bacterial species viz. Streptococcus lactis.

CONTENTS

			page
CHAPTER I -	Introd	uction	01
	1.1	Milk as a food	01
	1.2	Fermentation of milk	01
	1.2.1	Importance	01
	1.2.2	Proteolysis	04
	1.2.3	The hydrolysis of carbohydrates	06
	1.2.4	The hydrolysis of fat	08
	1.2.5	Flavours	09
	1.3	Fermentative Micro- organisms	12
	1.4	Yoghurt	15
	1.5	Other cultured milk- products	18
	1.6	Milk-curd	19
	1.7	Present Investigation	24
CHAPTER II -	Materi	als and Methods	26
	2.1	Materials	26
	2.1.1	Chemicals	26
	2.1.2	Glass-ware	27
	2.1.3	Equipment	28
	2.2.	Preparation of growth media	29
	2.2.1	Media for the isolation of	
		the bacterial species	29

		page
2,2,2	Media for the propagation of	
	the isolated strains of	
	bacteria	31
2.2.3	Media for the identifications	
	of Bacteria de Man. Rogosa and	
	Sharpe medium	33
2.2.4	Media for the isolation of	
	yeast strains	34
2.2.5	Media for the propagation of	
	yeast strains	35
2,2,6	Medium for the growth of yeast	
	(liquid-culture-medium)	36
2.2.7	Presporulation medium for yeast	36
2,2,8	Sporulation medium for yeast	37
2.2.9	Media for the identification of	
	the yeast strains	37
2.3	Microbiological methods	39
2.3.1	Collection of curd samples	39
2.3.2	Method of preparation of yeast	
	inoculum	40
2.3.3	Methods of isolation	42
2.3.3.1	Isolation of bacterial strains	42
2,3,3,2	Isolation of yeast strains	42
2.3.4	Method of identifying bacterial	
	strains	43
		2

				page
	CHAPTER III	- Resu	lts	57
		3.1	Isolation of micro-	
			organisms	57
		3.2	Identification of the	
			isolated micro-organisms	57
		3.3	Lactic acid production	
			by Streptococcus lactis	59
		3.4	Comparative study of acid	
			production by different	
			bacterial strains at	
			temperatures 30°C and 37°C	71
		3.5	Growth studies of Strep-	
			tococcus lactis and Lacto-	
			bacillus strain B in an	
			artificial medium	74
		3.6	Preferred range of pH for	
			bacterial strains, Strep-	
			tococcus lactis V and	
			thermobacterial strain B	75
		3.7	Acid production in milk by	
			a Streptococcus lactis	
			strain (V) a Thermobacter-	
			ial strain(B) and a combi-	
			nation of V and B strains	79
		3.8	Acid production by strains	
			V and B in the presence of	7
			yeasts	81

			page
	3.9	Growth of yeast in	
		acidified-milk	84
	3.10	Determination of the	
		percentage of alcohol	
		by the isolated yeast	
		strains in a mineral	
		medium using _lucose as	
		the sole source of	
		carbohydrate	85
	3.11	The analysis of volatile	
		flavour compounds in	
		milk-curd prepared by	
		single bacterial strains	89
	3.12	Assessment of flavour and	
		overall quality of milk-	
		curds prepared by different	
		combinations of micro-	
		ordanisms	101
CHAPTER IV -	Discuss	hion	107
	4.1	Micro-organisms found in	
		milk-curds	107
	4.2	Curd in the manufacture	
		of cheese	108
	4.3	Acid production by bacteria	109
	holy	bacteria	117
	4.5	Yeast in curd	119
	-	Flavour compounds of curd	122
	4.7	Studies with a taste-panel	125