

දෛවී - දිදා අධාසනාංශය 1280 - ර - 12 ම ජසව ධනපුර විශ්වවිදාලය නුවන කොට

1

THE BIOLOGY AND CONTROL OF ASPIDIOTUS DESTRUCTOR SIGNORET, ON COCONUT IN SRI LANKA

By

S. V. Sinnathamby

84915

84915

Thesis submitted for the Degree of Master of Science of the University of Sri Jayewardenepura, Sri Lanka

April, 1980

Summary of a Thesis submitted for the Degree of Master of Science

THE BIOLOGY AND CONTROL OF ASPIDIOTUS DESTRUCTOR SIGNORET

ON COCONUT IN SRI LANKA

By S.V.Sinnathamby

Studies on some aspects of the biology of the coconut scale, <u>Aspidiotus destructor Sign.</u> (Homoptera : Coccidae) were done in the field and laboratory. The coconut scale generally causes considerable damage to coconut in the North Western, Western, Southern and rarely in the North Central Provinces of Sri Lanka. Available literature on coconut scale and its control by biological, chemical and cultural methods is reviewed. The host range of the pest in Sri Lanka and in other countries is mentioned. The pest position in Sri Lanka and the control measures adopted so far are discussed. The natural factors like climate, preponderance of male scales and scarcity of feeding material for scale insects contribute to the pest decline.

Several indigenous natural enemies were recorded in coconut scale infestations. Out of these, an aphelinid parasite, <u>Aphytis chrysomphali</u> Mercet and two coccinellid predators <u>Pullus xerampelinus</u> Muls. and <u>Chilocorus nigritus</u> Fabr. are found to be important; the first two being recorded for the first time in Sri Lanka. Other two predators recorded for the first time are two coccinellids, <u>Chilocorus circumdatus</u> Sch., <u>Pullus</u> sp. ? <u>coccidivora</u> Ayyar and a nitidulid <u>Cebocephalus</u> sp. <u>P. xerampelinus</u> was attacked by a hymenopteron parasite <u>Aminellus indicus</u> Kerrich.

Heavy infestation of coconut scale by a fungus <u>Fusarium equiseti</u> (Corda) Sacc. was observed during the months of November and December when the rainfall and humidity were high.

-viii-

A study on some aspects of the biology of <u>A</u>. <u>destructor</u>, <u>P</u>.<u>xerampelinus</u> and <u>C</u>. <u>nigritus</u> was made. Studies on the degree of parasitisation effected by <u>A</u>. <u>chrysomphali</u> indicated a superproportional relationship only at three occasions from the field collected samples. In the majority of cases the parasite did not respond to changes in the host density. Studies on monthly fluctuation of scale populations and the accompanying changes in the density of natural enemies with climatic factors carriedout at two sampling sites, show that a monthly rainfall of over 200 mm, <u>above</u> an average temperature of below 27°C and the humidity of <u>A</u>SO % r.h are not suitable for the development and dispersal of <u>A</u>. <u>chrysomphali</u>. <u>P</u>. <u>xerampelinus</u> appears to be more active at higher densities of scale infestations whereas <u>C</u>. <u>nigritus</u> is more active at low densities. The changes in the population density of these predators are mainly due to changes in the host density.

The coccinellids introduced in Sri Lanka for the control of coconut scale are <u>Azya trinitatis</u> Mshl., <u>Cryptognatha nodiceps</u> Mshl., <u>Lindorus</u> <u>lophanthae</u> Blaisd. and <u>Chilocorus cacti</u> L. The former one was released soon after importation and the rest were mass multiplied on coconut scale infestations on the fruits of <u>Cucurbita maxima</u> and released in the field. The mass multiplication techniques of these beetles are explained. In spite of a large number released they were unable to establish.

The experiments indicated a heavy mortality of predators by the use of kerosene oil/soap emulsion. In view of this, the risk of using kerosene oil/soap emulsion in scale infestations is evaluated.

Suggested control measures are:

(a) To cut and burn the infested leaflets or the frond if detected in its initial stage of infestation and

-ix-

(b)By collection and re-distribution of <u>P</u>. <u>xerampelinus</u> and <u>C</u>. <u>nigritus</u> beetles or multiplying them in the laboratory if infestation is detected in its advanced stage.

No control measures are necessary if there is a preponderance of male scales or heavy parasitisation by the fungus.

Under Appendix 1, the description of the adult of <u>A</u>. <u>indicus</u>, the parasite of <u>P</u>. <u>xerampelinus</u> is given. <u>Homalotylus flaminius</u> Dalmn. and <u>Syntomosphyrum</u> sp. nr. <u>obscuriceps</u> Ferr., the parasites of <u>C</u>. <u>nigritus</u> and a hyperparasite, <u>Lygocerus</u> sp. on <u>H</u>. <u>flaminius</u> were also recorded for the first time and their abundance in the field and their laboratory behaviour are mentioned under Appendix 2.

-x-

CONTENTS

	LIST OF TABLES apongible for the control of coconst seale	iv
	LIST OF FIGURES	v
	AC KNOWLEDGEMENTS	vii
	SUMMARY coponde make of make causing a reduction of the	vii
1	AIMS AND METHODS OF STUDY	1
	1.1 Introduction and a sate that	l
	1.2 Study area	2
	1.3 Materials and a	3
	i Preparation of Cucurbita fruits and coconut seedlings	3
	ii Culture of A. destructor in the laboratory	4
	iii Culture of predators in the laboratory	6
	1.4 Preparation of specimens for study	6
	1.5 Catagorisation of palms for sex ratio experiments	7
2	BIOLOGY OF ASPIDIOTUS DESTRUCTOR SIGNORET	9
	2.1 Distribution and host r. ge	9
	i Distribution and host plants in Sri Lanka	12
	2.2 Nature of damage	14
	2.3 Differential diagnosis of coconut scale from other	
	disorders of a chromonall, P. xerenneling and	17
	2.4 Biology 100 at Balawatta Pstate and Indewews Patate	19
	i Hatching and emergence	19
	ii Nymphal instars	20
	iii Female Maranos Linua	20
	iv Male	21
	v Experiments on sex ratio and results	22
	2.5 Dispersal	25
	2.6 Discussion	27

3	CONTROL OF A. DESTRUCTOR	30
	3.1 Factors responsible for the control of coconut scale	30
	i Natural enemies	39
	ii Chemical control	31
	iii Preponderance of males causing a reduction of the	
	population	31
	iv Scarcity of feeding material	31
	v Climatic factors	33
	vi Cultural methods	33
	vii Natural death of scales	34
	3.2 Recovery of palms following infestations	34
	3.3 Discussion	39
4	INDIGENOUS NATURAL ENEMIES OF ASPIDICTUS DESTRUCTOR	41
	4.1 Materials and methods	45
	i Sampling sites	46
	ii Sampling method to study the degree of parasitisation	
	effected by Aphytis	51
	iii Sampling method to study the scale populations (with	
	time) as observed monthly and the accompanying changes	
	in density of A. chrysomphali, P. xerampelinus and	
	C. nigritus at Balawatta Estate and Kudawewa Estate	52
	4.2 Recognition and performance	53
	i Parasite-A. chrysomphali	53
	ii Predator-P. <u>xerampelinus</u>	73
	iii Predator- <u>C</u> . <u>nigritus</u>	81
	4.3 Discussion	85
F	INTERIORICE DE ACOTOTO DE ACOTOTO DE ACOTOTO	
5	INTRODUCED NATURAL ENEMIES OF ASPIDIOTUS DESTRUCTOR	89

-ii-

	5.1 Materials and methods	90
	i Predators imported	90
	ii Preparation of host material	91
	iii Collection of predators for field releases	91
	iv Colonization in the field	93.
	v Field experiment	105
	5.2 Results	105
	5.3 Discussion	106
6	THE EFFECT OF KEROSENE OIL/SOAP EMULSION ON PREDATOR	
	PREY POPULATIONS	109
	6.1 Materials and methods	110
	i Predator response	110
	ii Prey response	111
	6.2 Results	113
	i Predator response	113
	ii Prey response	113
	6.3 Discussion	113
7	CONCILIDING RECOMMENDATIONS	116
	REFERENCES	118
	APPENDIX 1	137
	APPENDIX 2	138
	the second s	

-iii-