PHYTOCHEMICAL AND PHARMACOLOGICAL STUDIES ON SOME MEDICINAL PLANTS OF SRI LANKA

ВΥ

CHITRA KUMARI RATNAYAKE, B.Sc. (Natural Resources Energy and Science Authority Research Grant Student)

Thesis submitted in partial fulfilment of the requirements for the Degree of Master of Science, of the Faculty of Applied Science, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.

105851

November, 1985.

105851

PHYTOCHEMICAL AND PHARMACOLOGICAL STUDIES ON SOME MEDICINAL PLANTS OF SRI LANKA

Chitra Kumari Ratnayake

ABSTRACT

This thesis covers the phytochemical studies and some biological studies of two medicinal plants belonging to the family Apocynaceae namely, *Alstonia macrophylla* and *Alstonia scholaris*. The second part of this thesis describes the estimation of vasicine content in *Adhatoda vasica* and its seasonal variation in the plant.

The second chapter describes the taxonomy and chemical characteristics of the genus *Alstonia*. The biosynthesis of indole alkaloids including the formation of strictosidine and the plausible biogenetic pathways of some *Alstonia* alkaloids are given in detail.

General methods of extraction of alkaloids that have been used so far, their advantages, disadvantages and more advanced and improved techniques are discussed in the fifth chapter.

According to the pharmacological reports on Alstonia alkaloids, it is evident that the two plants we have studied have significant medicinal value.

xii

In the first part of the eigth chapter, the method of extraction, fractionation and isolation of alkaloids of A. macrophylla and A. scholaris described in detail including the precautions undertaken to isolate alkaloids in their genuine form. Structures of twelve alkaloids have been elucidated from these two plants. One of which is a new alkaloid, 19-hydroxyvincamajine. In these studies we have found that local A. macrophylla is different from the same species found in other countries due to the presence of talcarpine, vincamajine, 19hydroxyvincamajine, vincorine and cabucraline. Talcarpine and picraline deacetyl are reported for the first time from the genus Alstonia. These studies give us significant evidences for chemotaxonomic relationships among different species of Alstonia and some other genera such as Talennaemontana, Strychnos, Pleiocanpa and Aspidosperma.

The effect of alkaloidal extracts of these two plants (leaf and stem bark) on alternative and classical pathways of human complement was tested in vitro. These findings suggest that these two plant alkaloids can be used as immunomodulating agents.

xiii

TABLE OF CONTENTS

	Page
TABLE OF CONTENTS	i
LIST OF TABLES	vi
LIST OF FIGURES	vii
ACKNOWLEDGEMENTS	ix
ABSTRACTS	xii
CHAPTER 1. INTRODUCTION	1
1.1 GENERAL INTRODUCTION	1
1.2 SCOPE OF THE PRESENT INVESTIGATION	_4
CHAPTER 2. TAXONOMY OF THE GENUS ALSTONIA	6
2.1 ORIGIN	6
2.2 BOTANICAL POSITION OF THE GENUS ALSTONIA	
WITHIN THE FAMILY OF APOCYNACEAE	7
2.3 SOME COMMON SPECIES OF THE GENUS ALSTONIA	7
CHAPTER 3. CHEMICAL CHARACTERISTICS OF	
THE GENUS ALSTONIA	12
3.1 REVIEW OF LITERATURE	12
CHAPTER 4. BIOSYNTHESIS OF INDOLE ALKALOIDS	29
4.1 BIOGENETIC CLASSIFICATION OF INDOLE ALKALOIDS	29
4.2 SOME INVESTIGATIONS OF BIOSYNTHETIC PATHWAYS	34
4.2.1 The pathways leading to precursors	
of indole alkaloids	36
4.2.2 Formation of strictosidine, the first	- (
intermediate of the pathway	36
CHAPTER 5. METHODS OF EXTRACTION OF ALKALOIDS	
<u>IN GENERAL</u>	42
5.1 INTRODUCTION	42

5.2 EXTRACTION WITH WATER IMMISCIBLE SOLVENTS	42
5.3 EXTRACTION WITH WATER MISCIBLE SOLVENTS	44
5.4 EXTRACTION WITH WATER	44
5.5 EXTRACTION AND PURIFICATION USING COLUMNS	45
5.6 METHODS EMPLOYED TO EXTRACT ALKALOIDS FROM <i>ALSTONIA</i> SPECIES	46
5.7 SOLVENTS AND ARTEFACT FORMATION	47
CHAPTER 6. PHYTOCHEMICAL AND PHARMACOLOGICAL STUDIES ON ALSTONIA MACROPHYLLA	
<u>AND ALSTONIA SCHOLARIS</u>	52
6.1 INTRODUCTION	52
6.2 ETHNOBOTANY AND ETHNOPHARMACOLOGY OF A.MACROPHYLLA AND A.SCHOLARIS	52
6.3 ALKALOIDS FROM A.SCHOLARIS	53
6.4 ALKALOIDS FROM A. MACROPHYLLA	55
CHAPTER 7. PHARMACOLOGY	57
CHAPTER 8. EXPERIMENTAL	61
8.1 PLANT MATERIAL	61
8.2 METHOD OF EXTRACTION	61
8.3 METHOD OF SEPARATION	61
8.4 METHOD OF IDENTIFICATION	62
8.4.1 Apparatus	62
8.5 METHOD OF EXTRACTION OF ALKALOIDS FROM A.MACROPHYLLA	63
8.6 FRACTIONATION OF ALKALOIDS FROM THE DIETHYLETHER FRACTION OF STEM BARK	65
8.7 ISOLATION OF ALKALOIDS	65

	8.8	CHARACTERIZATION OF ALKALOIDS	66
		8.8.1 Physical data of the alkaloids	66
	8.9	FRACTIONATION OF ALKALOIDS FROM THE	
		CHLOROFORM FRACTION OF STEM BARK	68
	8.10	ISOLATION OF ALKALOIDS	68
	8.11	CHARACTERIZATION OF ALKALOIDS	69
		8.11.1 Physical data of the alkaloids	69
	8.12	FRACTIONATION OF ALKALOIDS FROM THE	
		DIETHYLETHER AND CHLOROFORM FRACTIONS	
		OF LEAF OF A.MACROPHYLLA	71
	8.13	ISOLATION OF ALKALOIDS	71
	8.14	CHARACTERIZATION OF ALKALOIDS	72
		8.14.1 Physical data of isolated alkaloids	72
	8.15	EXTRACTION OF ALKALOIDS FROM A.SCHOLARIS	77
	8.16	FRACTIONATION OF ALKALOIDS FROM THE LEAVES	79
	8.17	ISOLATION OF ALKALOIDS	79
	8.18	CHARACTERIZATION OF ALKALOIDS	80
		8.18.1 Physical data of alkaloids	18 Ö
	8.19	FRACTIONATION OF ALKALOIDS FROM STEM BARK	82
	8.20	ISOLATION OF ALKALOIDS	82
	8.21	CHARACTERIZATION OF ALKALOIDS	82
		8.21.1 Physical data of alkaloids	82
	8.22	FRACTIONATION OF ALKALOIDS FROM ROOT BARK	84
C	HAPTEI	R 9. INHIBITION OF CLASSICAL AND ALTERNATIVE	
		ACTIVATION PATHWAYS BY ALKALOIDAL	
		EXTRACTS OF A. MACROPHYLLA AND A. SCHOLARIS	85
	9.1	INTRODUCTION	85
		9.1.1 Complement	85
	9.2	EXPERIMENTAL	86

	9.2.1 Materials and method	86
	9.2.2 Solutions and buffers	86
	9.2.3 Human complement	87
	9.2.4 The anti-erythrocyte sera	87
	9.2.5 The erythrocytes	87
	9.2.6 Preparation of sensitised erythrocytes	88
9.3	THE COMPLEMENT ACTIVITY ASSAY	88
	9.3.1 The alternative pathway	88
	9.3.2 The classical pathway	91
9•4	RESULTS	93
CHAPTE	R 10. RESULTS AND DISCUSSION	97
10.1	MAIN SKELETAL TYPES OF APOCYNACEAE ALKALOIDS	97
10.2	EVIDENCES FROM BIOMIMETIC SYNTHESIS	99
10.3	CHEMOTAXONOMIC SIGNIFICANCES OF THE	
	PRESENT INVESTIGATION	101
10.4	BIOLOGICAL ACTIVITY OF ALKALOIDAL EXTRACTS	1.0/
	OF A.MACROPHYLLA AND A.SCHOLARIS	100
<u>CHAPTE</u>	<u>R II. STUDIES ON ADHATODA VASICA</u>	109
11.1	INTRODUCTION	T09
11.2	ETHNOPHARMACOLOGY	109
11.3	GENERAL PHARMACOLOGY	111
11.4	CHEMISTRY	113
11.5	STUDIES ON SEASONAL VARIATIONS OF VASICINE	
-	IN FIVE FARIO OF H.VHOICH	115
	11.5.1 Experimental	115
	11.5.4.1 Extraction of alkaloids	115
	11.5.1.2 Method of estimation	116

iv

e

.