

BIOLOGY AND CONTROL OF PALM WEEVIL

Rhabdoscelus maculatus IN FOLIAGE NURSERIES

All the second
and the second second second second second
and the second sec

BY

MALAVIPATHIRANNEHELAGE DONA SUDRSHI UDAYANGANI KARUNARANE

Thesis submitted to the University of Sri Jayawardenepura for the award of the Degree of Master of Philosophy in Zoology on September 2010

203059

BIOLOGY AND CONTROL OF THE PALM WEEVIL Rhabdoscelus maculatus IN FOLIAGE NURSERIES

Malavipathirannehelage Dona Sudarshi Udayangani Karunaratne

ABSTRACT

A study on the Biology and control of palm weevil *Rhabdoscelus maculatus* was carried out at Tropiflora ornamental palm nurseries in Sri Lanka. This weevil, an important pest of ornamental palms, was recorded for the very first time in Sri Lanka at Tropiflora Nurseries. Although the incidence of this weevil is restricted to ornamental palms at present, there is a very realistic threat of it becoming a pest of important cultivations such as coconut and sugarcane. The present investigation was therefore, carried out with the view of confirming the identification of weevil, studying its biology and ultimately finding a suitable, environmentally friendly method for its control.

Biological, morphological and behavioural aspects of the weevil were studied under laboratory, semi-natural and natural conditions. The adult is a small, reddish-brown weevil with two black markings on the elytra and the thorax. Mature female weevil lays eggs inside cavities made in the leaf sheath. Under laboratory conditions, period for egg incubation was 5.00 ± 0.82 days. The larva is creamy white, legless grub with rounded, highly sclerotized, reddish brown head capsule. The frequency distribution analysis of head capsule width revealed six larval instars. Early weevil infestation of palms is indicated by a jelly like substance oozing from the holes in the leaf sheaths. *R. maculatus* larvae take about 7.75 ± 3.70 weeks to complete its development and they pupate inside a cocoon made with tightly bound, fibrous material in 2.50 ± 0.76 weeks. The total life cycle of this weevil is completed in 10-12 weeks and observations of its life cycle in palm fields

indicated four generations per year. The life span of adult weevils is between 8-10 months under semi-natural conditions.

The female weevil preferred *Crysolidocarpus lutescens* most for oviposition followed by *Livistonia rotundofolia* and *Saccharum officinarum* respectively. However, host acceptability in the case of *Cocos nucifera* was zero.

The aggregation pheromone of the sugarcane weevil *R. obscurus*, (E2)-6-methyl-2-hepten-4-ol & 2-methyl-4-octonol (Rhynchophorol) and 2-methyl-4-octanol, was found in this study to be highly effective in attracting *R. maculatus*. Plastic bucket-traps baited with the aggregation pheromone in combination with plant kairomones (ethyl acetate and cut sugarcane) captured significantly more weevils than traps baited with the combination of pheromone and sugarcane or individual lures alone. In the field, such traps were effective in attracting weevils throughout the one month experimentation period. The Trapping-out strategy using different combinations of lures almost completely brought down the palm weevil population to an extremely low level in the field. Significantly, in this study, pheromone and kairomone combination was found to be the most efficacious agent for capture of adult weevils. The overall results of this study demonstrate amply that this trap-out strategy using the aggregation pheromone and host kairomones could be successfully incorporated into Integrated Pest Management (IPM) programmes to suppress palm weevil populations.

CONTENTS

	Page
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF PLATES	ix
ACKNOWLEDGEMENT	xi
ABSTRACT	xii
1. INTRODUCTION	
1.1 Pest Status of Cane Palms	3
1.2 Main Objectives of the Study	6
2. LITERATURE REIEW	
2.1 Botany of Palms	7
2.1.1. Chrysalidocarpus lutescens	8
2.1.2. Livistona rotundifolia	9
2.1.3. Phoenix roebelenii	10
2.2 Insect Pests of Palms	11
2.2.1 Pest Definition	11
2.2.2 Development of Pest Status	12
2.2.3 Insect Pests of Commercial and Ornamental Palms	12
2.2.3.1 Weevil Pests of Palms	13
2.2.3.2 Characteristics of Palm Weevils	14
2.2.3.3 Biology of Palm Weevils	15
2.2.3.4 Semiochemicals of Palm Weevils	16
2.2.3.5 Host Plant Kairomones	18
2.3 Palm Weevil Taxonomy	20

i

2.3.1 Superfamily Curculionoidea	20
2.3.2 Family Dryophthoridae	21
2.3.3 Genus Rhabdoscelus	21
2.3.3.1 Taxonomy of Rhabdoscelus maculatus	27
2.4 Geographical Distribution of Rhabdoscelus obscurus and	
Rhabdoscelus maculatus	27
2.5 Management of Rhabdoscelus Palm Weevils	29
2.5.1 Physical and Cultural Control	29
2.5.2 Biological Control	30
2.5.3 Host-Plant Resistance	31
2.5. 4 Chemical Control	32
2.5.5 Phytosanitary Measures	32
2.5.6 Semiochemicals in Palm Weevil Management	33
3. MATERIALS AND METHODS	
3.1 Distribution and Abundance of Rhabdoscelus maculatus in	
Foliage Nurseries	36
3.2 Biology of Rhabdoscelus maculatus	39
3.2.1 Life History Parameters of R. maculatus	39
3.2.1.1 Ovipositiional Preference and Incubation period	
of Eggs	39
3.2.1.2 Duration of Larval and Pupal Stages	41
3.2.1.3 Determination of Larval Instars	42
3.2.1.4 Duration of the Total Life Cycle of <i>R. maculatus</i>	43
3.3 Morphological Characteristics and Behavioural Aspects of	
Rhabdoscelus maculatus	44
3.3.1 Morphological Characteristics	44

ii

	3.3.2 Behavioral Aspects of R. maculatus	44
	3.3.2.1 Behaviour of Adult Weevil	44
	3.3.2.2 Feeding Habits	44
	3.3.2.3 Host Acceptability	45
3.4	Palm Weevil Damage and Damage Symptoms	45
3.5	Control of Rhabdoscelus maculatus	
	3.5.1 Olfactory Responses of Adult Weevils to Different	
	Lures in a Still-Air Bioassay under Laboratory	
	Conditions	46
	3.5.2 Attraction of Adult Weevils to Different Food	
	Lures under Semi-Natural Conditions	51
	3.5.3 Field Trials	53
	3.5.3.1 Responses of Adult Weevils to Food Lures	53
	3.5.3.2 Responses of adult weevils to Food Lures and	
	Aggregation Pheromone in Different	
	Combinations	54
	3.5.3.3 Field-Trapping with Aggregation Pheromone	
	and Food Lures for the Management of	
	R. maculatus	56
3.6	6 Data Analysis	57
4.	RESULTS AND DISCUSSION	
4.	1 Distribution and Abundance of <i>Rhabdoscelus</i>	
	maculatus in Foliage Nurseries.	58
4.	2 Biology of R. maculatus	63
	4.2.1 Life History Parameters of R. maculatus	63
	4.2.1.1 Ovinositional Preference and Incubation period	

of Eggs	63
4.2.1.2 Duration of Larval and Pupal Stages	64
4.2.1.3 Determination of Larval Instars	65
4.2.1.4 Duration of the Total Life Cycle	68
4.3 Morphology and Behavioural Aspects of R. maculatus	69
4.3.1 Morphological Characters	69
4.3.2 Behavioural Aspects	74
4.3.2.1 Behaviour of Adult Weevil	74
4.3.2.2 Feeding Habits	75
4.3.2.3 Host Acceptibility	77
4.4 Palm Weevil Damage and Damage Symptoms	78
4.5 Control of Rhabdoscelus maculatus	81
4.5.1 Olfactory Responses of Adult Weevils to Different	
Lures in a Still-Air Bioassay under Laboratory	
Conditions	81
4.5.2 Attraction of Adult Weevils to different Food Lures	
under Semi-Natural Conditions	84
4.5.3 Field Trials	86
4.5.3.1 Responses of Adult Palm Weevils to Food Lures	
in Crysolidocarpus Field	86
4.5.3.2 Responses of Adult Weevils to Food Lures and	
Aggregation Pheromone in Different	
Combinations	88
4.5.3.3 Field-Trapping with Aggregation Pheromone	
and Food Lures for the Management of	
R. maculatus	95

iv

5. CONCLUSIONS	99
6. REFFERENCES	101
7. APPENDIX	109

V