

\$, 3000

VULCANIZED DIPPED PRODUCTS

BY

GALGANA MESTHRIGE PRIYANTHI PERERA

Project report submitted in partial fulfilment of the requirements for the degree of Master of Science of the Faculty of Applied Science, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.

October – 1999

150270

ABSTRACT

Latex from <u>Hevea brasiliensis</u> tree, is always unstable. It contains insufficient phosphate to precipitate its magnesium on ammoniation as magnesium ammonium phosphate. After centrifuging, magnesium remains in the concentrated latex and is partly responsible for its abnormal properties specially for its low mechanical stability and abnormal gelling characteristics. The properties are improved by the addition of excess phosphate before processing. But some time, with higher mechanical stability time shows poor properties in processing.

The effect of Mg^{2+} and PO_4^{3-} ion concentration on stability characteristics of latex and physical properties of dipped products have been investigated in this study.

A series of latex samples were prepared by adding magnesium sulphate as a source of Mg^{2+} and diamonium hydrogen phosphate as a source of PO_4^{3-} .

Stability characteristics were measured for the above series of latex samples, and for that mechanical stability time, chemical stability time, volatile fatty acid number and viscosity tests were repeated weekly.

The optimum stabilization was determined in order to obtain maximum mechanical stability, chemical stability time and minimum viscosity. According to the results, it was observed that the mechanical stability time, chemical stability time have a maximum and viscosity has a minimum around 30ppm PO_4^{3-} level.

Using a surgical glove formula, dipped films and casted films were prepared. The vulcanizates obtained (casted films and dipped films) were tested for their tensile properties (aged and unaged) and the sample having optimum tensile value was investigated as well.

CONTENTS

ACKNOWLEDO	GEMENT								 	iv
ABSTRACT									 	xĵ
CHAPTER ONE										
1.0 Int	roduction								 	1
	1.1 Constitutes	of NR L	atex						 	2
	1.1.1	Nature	of Mat	erials					 	2
	1.1.2	Structur	re & C	ompos	ition o	ofNR	latex		 	2
	1.1.3	Chemic	al Cor	npositi	on of	NR lat	ex		 	3
	1.2 Stabilization of rubber particles in field latex due to							the		
		elect	rostati	c repul	sion				 	5
	1.3 Preservation	n of NR	Latex						 	5
	1.4 Concentrate	d latex							 	8
	1.4.1	Centrifi	uged la	atex					 	8
	1.5 cross-linkin	g of NR							 	8
	1.6 Sulphur Vul	lcanizati	ion						 	9
	1.7 Non sulphur	r Vulcar	izatio	n					 	10
	1.8 Current pos	ition of	latex c	oncent	rate ir	ndustry	·	••••	 	10

CHAPTER TWO

2.0 literature review an	d objectives	••••					 	12
2.1 Parameters	to measure the	stabilit	y of N	R Late	X		 	13
2.1.1	Mechanical st	ability t	time (N	MST)			 	13
2.1	.1.a Spontaneo	ous enha	anceme	ent of N	MST in	1 latex		
				conce	ntrate		 	15
2.1	.1.b Variation	of MST	in lat	ex with	n addit	ion of		
				stabili	izers		 	15
2.1.2.	Chemical stab	ility tin	ne			·	 	16
2.1.3.	Volatile fatty	acid nu	mber ((VFA)			 	17
2.1.4.	Viscosity						 	19

2.2 Earlier investigations related to the effect of Mg^{2+} and PO_4^{3-} ions on									
stability of the latex						19			
2.3 Factors effecting stability of NR Lates	۲					20-22			
2.4 Effect of metallic ions on destabilization & concentration of latex									
2.5 Form in which Mg occurs in latex						25			
2.6 The objective for undertaking this invo	estigati	on		·		26			

-

CHAPTER THREE

3.0 Experim	ental Proce	edures									27
3.1 1	Determinat	tion of th	e effect	t of pho	osphat	e and r	nagne	sium io	on		
(concentrati	ions on st	tability	of Late	ex						28
	3.1.1	Materia	ıls		••••						28
		3.1.1.1	Latex								28
		3.1.1.2	Reage	nts							28
		3.1.1.3	Other	ingred	ients						29
	3.1.2	Charac	terizatio	on of c	entrifu	iged la	tex sa	mple			29
		3.1.2.1	Deterr	ninatic	n of d	ry rubl	ber co	ntent			29
		3.1.2.2	Deterr	ninatic	on of to	otal sol	id cor	ntent			30
		3.1.2.3	Deterr	ninatic	on of a	lkalini	y				31
		3.1.2.4	Deterr	ninatic	on of m	nagnes	ium c	ontent			32
		3.1.2.5	Deterr	ninatic	on of n	nechan	ical st	ability	time (1	MST)	33
		3.1.2.6	Detern	ninatic	on of v	olatile	fatty	acid nu	mber		33
		3.1.2.7	Deterr	ninatic	on of C	Chemic	al Sta	bility ti	me	,	34
		3.1.2.8	Detern	ninatic	on of v	iscosit	у		•••		34
	3.1.3	Prepara	ation of	the ser	ries of	sampl	es				35
	3.1.4	Determ	ination	of the	stabili	ity of l	atex				36
3.2	Determina	tion of th	e effec	t of ph	osphat	e and 1	nagne	esium c	oncent	trations	
	or	n physica	l prope	rties of	latex	based	produ	cts	·		36
	3.2.1	Materia	als (to p	orepare	surgio	cal glo	ve filr	ns)			36
		3.2.1.1	Latex					•••			36
		3.2.1.2	Reage	ents							36
		3.2.1.3	Comp	oundir	ng Ingr	edient	s				36

(viii)

00 90 20 84

3.2.2	Preparation of dipped films (using surgical glove formula)								
	3.2.2.1 preparation of coagulant	37							
	3.2.2.2 Preparation of dispersions	37							
	3.2.2.3 Compounding and the maturation of								
	latex compounds	38							
	3.2.2.4 Dipping Process	39							
	3.2.2.5 Drying, curing and leaching	40							
	3.2.2.6 Stripping	40							
3.2.3	Preparation of cast films	42							
3.2.4	Determination of physical properties of latex based films	42							
	3.2.4.1 Determination of tensile properties of unaged								
	casted & dipped films	42							
	3.2.4.2 Determination of Tensile aging properties of								
	aged vulcanizates	43							

CHAPTER FOUR

4.0 Results			44
4.1 Characteristics of latex			45
4.2 Results for the prepared series of latex			45
4.2.1 Dry rubber content & total solid content			45
4.2.2 Effect of Magnesium and phosphate on stability	у		46
4.2.2.1 Variation of mechanical stability time	(MST)		
with maturation time & Mg ²⁺ and PO	0_4^{3-} ion		
concentrations			46-50
4.2.2.2 Variation of chemical stability time wi	th		
Maturation time & Mg ²⁺ and PO ₄ ³⁻ ion conc	entrati	ons	50-53
4.2.2.3 Variation of volatile fatty acid content	(VFA))	
with maturation time and Mg ²⁺ and Pe	O_4^{3-} io	n	
concentrations			53-56
4.2.2.4 Variation of viscosity values with matu	uration	tim	e
and Mg^{2+} and PO_4^{3-} ion concentration	IS		57-60

4.2.3	Tensile properties of vulcanized unaged dipped							
	Films and casted	films						60
4.2.4	Tensile properties of	f vulca	nized,	aged,	dipped	films	and	
	casted films							61-63

CHAPTER FIVE

5.0 Discussion	•••	 64
5.1 Variation of the mechanical stability value	•••	 65
5.2 Variation of the chemical stability values	•••	 66
5.3 Variation of volatile fatty acids		 66
5.4 Variation of viscosity of the latex samples		 67
5.5 Effect of Mg^{2+} and PO_4^{3-} ion concentration on tensile pr	operties	 67-68

CHAPTER SIX

6.0 Conclusions and recommendations for further work					••••	 	69
6.1 Conclusions						 	70
6.2 Suggestions for further	· work					 	71

. . .

. . .

72

...

. . .

. . .

...

REFERENCES

.

. . . .

. . .

. . .