QUALITY IMPROVEMENTS OF NATURAL RUBBER LATEX FOAM

By

Kuruppu Achchige Prabha Samanthi Kuruppu

M.Sc. (Polymer Science & Technology) 2001-December
ABSTRACT

Natural rubber latex foam is a highly profitable product for Sri Lanka as a third world country. European market is available for natural rubber latex foam very competitively with Polyurethane foam. Natural rubber latex is very cheap and a highly available source in Sri Lanka. So the production cost is low when compared with other products. But Sri Lanka has to compete with countries such as Malaysia, India, Thailand, Bangladesh and Pakistan. So the quality of the product has become the major need today.

The quality of the natural rubber latex foam depends on the quality of the latex. The quality checking was carried out by testing; dry rubber content, total solid content, ammonia content, volatile fatty acid content and mechanical stability time. The qualitatively prepared dispersions and compounded latex were tested. A selected recipe given by the company’s management was changed. Those changes were made mainly with the added chemicals and physical parameters of the process to improve the quality of latex foam.

Effects of chemicals mainly studied were zinc oxide, diphenylguanidene and sodiumsilicofluoride. The physical factors, which mainly influenced the quality of the natural rubber latex foam, were initial temperature of the compounded latex, diphenylguanidene adding time and maturation time of the compounded latex. In addition to this pH variation and density variation in the final foam product were studied in depth.
CONTENTS

List of figures vi
List of tables vii
Abstract ix

CHAPTER I

1.0 Introduction 1
1.1 History 2
1.2 The Dunlop process 4
 1.2.1 Batch wise foaming process 4
 1.2.2 Continuous foaming process 5
1.3 The Talalay process 6
1.4 The Revertex process 7
1.5 Formulations 8
 1.5.1 Natural rubber latex foam 8
 1.5.2 Synthetic lattices in foam industry 12
1.6 Ingredients incorporated in latex foam 16
 1.6.1 Vulcanizing agents 16
 1.6.2 Antioxidants 18
 1.6.2.1 Amine type antioxidants 18
 1.6.2.2 Phenolic type antioxidants 18
 1.6.3 Accelerators 19
 1.6.4 Stabilizers 19
1.6.5 Gelling agents

1.6.6 Foam promoters

1.7 Defects of latex foam

1.7.1 Poor foam structure due to high ammonia content

1.7.2 Oil nature of the foam surface due to defect excessive mould releasing agent

1.7.3 Shrinkage

1.7.4 Foam collapse

1.7.5 Settling

1.7.6 Complete distortion of the foam

1.7.7 Rat holes

1.7.8 Tear

1.7.9 Clotting problem due to diphenylguanidene adding time

1.7.10 Edge defect

1.7.11 Skin defect

1.7.12 Dirt

1.7.13 Finger moulds

1.7.14 Delayed gelling action due to too much soap

1.7.15 Bad colour

1.7.16 No uniformity in foam due to filling in too serious

1.7.17 Rough skin

1.7.18 Varying hardness

1.8 Latex specifications

1.9 Aim of the project
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>Experimental</td>
<td>30</td>
</tr>
<tr>
<td>2.1</td>
<td>Preparation of dispersions</td>
<td>30</td>
</tr>
<tr>
<td>2.2</td>
<td>Main steps of foam production</td>
<td>35</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Compounding</td>
<td>35</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Maturation</td>
<td>35</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Foaming</td>
<td>35</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Gelling</td>
<td>35</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Vulcanization</td>
<td>36</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Washing</td>
<td>36</td>
</tr>
<tr>
<td>2.2.7</td>
<td>Drying</td>
<td>36</td>
</tr>
<tr>
<td>2.3</td>
<td>Process flow chart</td>
<td>37</td>
</tr>
<tr>
<td>2.4</td>
<td>Experimental</td>
<td>38</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Laboratory foam compounding operations</td>
<td>39</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Procedure</td>
<td>40</td>
</tr>
<tr>
<td>2.5</td>
<td>Testing of dispersions</td>
<td>42</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Turbidity test</td>
<td>42</td>
</tr>
<tr>
<td>2.5.2</td>
<td>pH value test</td>
<td>42</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Total solid content</td>
<td>42</td>
</tr>
<tr>
<td>2.6</td>
<td>Testing of latex</td>
<td>43</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Dry rubber content test for natural rubber latex</td>
<td>43</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Total solid content for natural rubber latex</td>
<td>44</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Alkalinity test for natural rubber latex</td>
<td>44</td>
</tr>
</tbody>
</table>
3.2 Test results for latex used

3.2.1 Dry rubber content

3.2.2 Total solid content

3.2.3 Alkalinity test

3.2.4 Volatile fatty acid number

3.2.5 Mechanical stability time test

3.3 Test results for compounded latex

3.3.1 Chloroform test

3.3.2 Boric acid test

3.4 Chemicals affecting on gelling time

3.4.1 Zinc oxide amount on gelling time

3.4.2 Diphenylguanidene amount on gelling time

3.4.3 Sodiumsilicofluoride amount on gelling time

3.5 Physical factors and gelling time

3.5.1 Effect of initial temperature of compounded latex on gelling time

3.5.2 Effect of maturation time of compounded latex on gelling time

3.5.3 Effect of diphenylguanidene adding time on gelling time

3.5.4 Density of the foam product

3.5.5 pH variation in gelation

Conclusion

Further studies

References