ADENOSINE TRIPHOSPHATASE ACTIVITY IN HEVEA LATEX WITH SPECIAL REFERENCE TO BROWN BAST

BY

CHANDRIKA PADMINI WICKREMasinghe

(B.Sc. Sri Lanka)

Thesis submitted in partial fulfilment of the requirements for the Degree of Master of Science of the Faculty of Applied Science, University of Sri Jayawardanapura, Nugegoda, Sri Lanka.

1983.
ADENOSINE TRIPHOSPHATASE ACTIVITY IN HEVEA LATEX WITH SPECIAL
REFERENCE TO BROWN BAST

BY

C.P. WICKREMASINGHE

ABSTRACT

Adenosine triphosphatase (ATP-ase) from F-serum of Hevea brasiliensis was purified by (NH₄)₂SO₄ sequential precipitation, gel filtration and gel electrophoretic techniques. This enzyme had a pH optimum of 7.5 and a temperature optimum of 37°C. It had a Km value in the range of 0.6 to 0.8 mM at pH 7.4 and 37°C in Tris/HCl buffer. The activity of the enzyme was found to be cation dependent. The removal of cations by dialysis and re-introduction them into the enzyme system confirmed this. Five cations were investigated for their effect on the ATP-ase activity and the stimulatory action was in the order of Mn > K > Mg > Ca > Na. When various cationic combinations two-ion, three-ion and four-ion etc was tried, it was observed that combinations (Na + K), (Na + K + Mn), (Ca + Mg + K + Mn) had greater stimulatory influence on the enzyme activity.

Comparative studies on ATP-ase activity in brown bast and healthy trees of Hevea showed higher ATP-ase activity in healthy serum of clones RRIM 600 and RRIC 52, than that of brown bast trees and vice versa in the clones of PB 86 and RRIC 101. In brown bast bark the enzyme activity was always found to be
greater than that of healthy in all four clones investigated namely RRIM 600, RRIC 101, RRIC 52 and PB 86. The ATP-ase activity in bark extracts at different heights of brown bast trees was found to be higher than that of healthy trees, at corresponding heights, giving an indication of the spread of brown bast condition into the neighbouring tissues too, as suggested by some of the previous workers.

Cationic analysis of bark and latex showed Ca-less, Mg-more (except for RRIM 600), N-more were associated with brown bast condition. When these conditions were simulated, a higher ATP-ase activity as anticipated, was observed in F-serum. These results strongly favours a generally held view that a nutritional imbalance may be associated with this physiological disorder.

In addition to various cations and their combinations, phenolic substances in the bark also had a significant effect on ATP-ase activity.

Kaemperol was found to be stimulatory at low concentrations (up to 4 mM) and had an inhibitory effect at high concentrations. 2,4 Dinitrophenol and Quercetin were inhibitory at low concentrations (up to 1 mM and 8 mM respectively) and they were found to be stimulatory at above these concentrations.
CONTENTS

MEMORANDUM
CONTENTS I - III
ABBREVIATIONS IV - V
ACKNOWLEDGEMENTS VI
ABSTRACT VII - VIII

1. INTRODUCTION 1 - 4

2. LITERATURE CITED
2.1 Location of the enzyme 5 - 9
2.2 Preparation of the enzyme 10 - 11
2.3 Properties of the enzyme 11 - 19
2.4 Nature of the enzyme 19 - 20
2.5 ATP-ase in plant systems 20 - 34
2.6 Ca and Mg metabolism in plants 35 - 36
2.7 Review of brown bast 37 - 39

3. MATERIALS AND METHODS
3.1 Preparation of concentrated buffered dialysed F-serum 40
3.2 Assay of free inorganic phosphate (P_i) in the F-serum 41
3.3 Calibration curve 42 - 44
3.4 Dialysis of F-serum 44
3.5 Assay of ATP-ase activity in dialysed F-serum 45
3.6 Effect of various factors on the ATP-ase activity in dialysed F-serum 46 - 49
3.7 The ATP-ase activity in healthy and brown bast trees 49
3.8 The ATP-ase activity in F-serum of low and high yielders

3.9 The ATP-ase activity of concentrated buffered dialysed F-serum in clonal variation

3.10 Isolation and purification of ATP-ase

3.11 Electrophoresis

3.12 Sequential separation of proteins in F-serum by $(\text{NH}_4)_2\text{SO}_4$ precipitations

3.13 Chemical kinetic studies of the partially purified enzymes

3.14 Clonal variation in ATP-ase activity patterns in bark extracts of healthy and brown bast trees

3.15 The effect of healthy and brown bast bark extracts of PB 86 on the ATP-ase activity of concentrated buffered dialysed F-serum of PB 86

3.16 Determination of activity patterns in healthy and brown bast bark extracts at different heights

3.17 The analysis of bark from healthy and brown bast trees of clones RR1C 101, RRIM 600 and PB 86 for the presence of ions Ca, Mg, Na, K, N and P

3.18 Cationic synergistic effects on ATP-ase activity

3.19 Study of phenolics in bark extracts

3.20 Effect of phenolic acids on ATP-ase activity

4. RESULTS

4.1 Assay of P_i in F-serum

4.2 Effect of various factors on the ATP-ase activity in dialysed F-serum

4.3 The effect of cations on the activity of ATP-ase in F-serum

4.4 The effect of pH on the cation stimulating ATP-ase
III

4.5 The effect of pH on the synergistic effects of cations at their optimum concentrations 86

4.6 The cations effect and their synergism on ATP-ase activity of concentrated buffered dialysed F-serum 87 - 88

4.7 The ATP-ase activity in concentrated buffered dialysed F-serum of healthy and brown bast trees 89 - 92

4.8 Analysis of cations in the dried films of latex 92 - 94

4.9 Clonal variation of ATP-ase activity in concentrated buffered dialysed F-serum 95

4.10 Isolation and purification of the enzyme 96 - 110

4.11 Clonal variation of ATP-ase activity in bark extracts of healthy and brown bast trees 111 - 112

4.12 The effect of addition of bark extracts on ATP-ase activity in concentrated buffered dialysed F-serum of clone PB 86 112

4.13 The effect of removal of cations on the ATP-ase activity in bark extracts 113 - 114

4.14 ATP-ase activity patterns in healthy and brown bast extracts of different heights 114 - 116

4.15 Analysis of bark of healthy and brown bast trees for cations 116 - 120

4.16 Effect of selected cation combinations on ATP-ase activity 121

4.17 Phenolics in bark extracts 122 - 125

4.18 Effect of phenolics on ATP-ase activity in concentrated buffered dialysed F-serum 126 - 129

5. DISCUSSION 130 - 145

REFERENCES 146 - 162