ADENOSINE TRIPHOSPHATASE ACTIVITY IN HEVEA LATEX WITH SPECIAL

REFERENCE TO BROWN BAST

109688

AR OI

BY

CHANDRIKA PADMINI WICKREMASINGHE

(B.Sc. Sri Lanka)

Thesis submitted in partial fulfilment of the

requirements for the

Degree of Master of Science

of the Faculty of Applied Science, University of Sri Jayawardanapura, Nugegoda, Sri Lanka.

1983.

109688

ADENOSINE TRIPHOSPHATASE ACTIVITY IN <u>HEVEA</u> LATEX WITH SPECIAL REFERENCE TO BROWN BAST

BY

C.P. WICKREMASINGHE

ABSTRACT

Adenosine triphosphätase (ATP-ase) from F-serum of <u>Hevea</u> <u>brasiliensis</u> was purified by $(NH_4)_2SO_4$ sequential precipitation, gel filtration and gel electrophoretic techniques. This enzyme had a pH optimum of 7.5 and a temperature optimum of 37°C. It had a K_m value in the range of 0.6 to 0.8 mM at pH 7.4 and 37°C in Tris/HCl buffer. The activity of the enzyme was found to be cation dependent. The removal of cations by dialysis and re-introduction them into the enzyme system confirmed this. Five cations were investigated for their effect on the ATP-ase activity and the stimulatory action was in the order of Mn > K>Mg> Ca> Na. When various cationic combinations two-ion, three-ion and four-ion etc was tried, it was observed that combinations (Na + K), (Na + K + Mn), (Ca + Mg + K + Mn) had greater stimulatory influence on the enzyme activity.

Comparative studies on ATP-ase activity in brown bast and healthy trees of <u>Heves</u>, showed higher ATP-ase activity in healthy serum of clones RRIM 600 and RRIC 52, than that of brown bast trees and <u>vise versa</u> in the clones of PB 86 and RRIC 101. In brown bast bark the enzyme activity was always found to be greater than that of healthy in all four clones investigated namely RRIM 600, RRIC 101, RRIC 52 and PB 86. The ATP-ase activity in bark extracts at different heights of brown bast trees was found to be higher than that of healthy trees, at corresponding heights, giving an indication of the spread of brown bast condition into the neighbouring tissues too, as suggested by some of the previous workers.

Cationic analysis of bark and latex showed Ca-less, Mg-more (except for RRIM 600), N-more were associated with brown bast condition. When these conditions were simulated, a higher ATP-ase activity as anticipated, was observed in F-serum. These results strongly favours a generally held view that a nutritional imbalance may be associated with this physiological disorder.

In addition to various cations and their combinations, phenolic substances in the bark also had a significant effect on ATP-ase activity.

Kaematerol was found to be stimulatory at low concentrations (up to 4 mM) and had an inhibitory effect at high concentrations. 2.4 Dinitrophenol and Quercetin were inhibitory at low concentrations (up to 1 mM and 8 mM respectively) and they were found to be stimulatory at above these concentrations. CONTENTS

MEMO	RANDUM			
CONT	ENTS	I	-	III
ABBR	EVIATIONS	IV	-	V
ACKN	OWLEDGEMENTS	VI		
ABST	RACT	VII	-	VIII
1. I	NTRODUCTION	1	-	4
2. L	ITERATURE CITED			
2.1	Location of the enzyme	5	-	9
2.2	Preparation of the enzyme	10	-	11
2.3	Properties of the enzyme	11	-	19
2.4	Nature of the enzyme	19	-	20
2.5	ATP-ase in plant systems	20	-	34
2.6	Ca and Mg metabolism in plants	35	-	36
2.7	Review of brown bast	37	-	39
3. м.	ATERIALS AND METHODS			
3.1	Preparation of concentrated buffered dialysed F-serum	40		
3.2	Assay of free inorganic phosphate (P_i) in the F-serum	41		
3.3	Calibration curve	42	Ŧ	44
3.4	Dialysis of F-serum	44		
3.5	Assay of ATP-ase activity in dialysed . F-serum	45		
3.6	Effect of various factors on the ATP-ase activity in dialysed F-serum	46	-	49
3.7	The ATP-ase activity in healthy and brown bast prees	49		

I

3.8	The ATP-ase activity in F-serum of low and high yielde.s	49	-	50
3.9	The ATP-ase activity of concentrated buffered dialysed F-serum in clonal variation	50		
3.10	Isolation and purification of ATP-ase	50	-	53
3.11	Electrophoresis	53	-	55
3.12	Sequential separation of proteins in F-serum by $(NH_4)_2SO_4$ precipitations	56	-	57
3.13	Chemical kinetic studies of the partially purified enzymes	57	-	58
3.14	Clonal variation in ATP-ase activity patterns in bark extracts of healthy and brown bast trees	59		
3.15	The effect of healthy and brown bast bark extracts of PB 86 on the ATP-ase activity of concentrated buffered dialysed F-serum of PB 86	59	-	60
3.16	Determination of activity patterns in healthy and brown bast bark extracts at different heights	61		
3.17	The analysis of bark from healthy and brown bast trees of clones RRIC 101, RRIM 600 and PB 86 for the presence of ions Ca, Mg, Na, K, N and P	61	-	63
3.18	Cationic synergistic effects on ATP-ase activity	63	-	64
3.19	Study of phenolics in bark extracts	64	-	67
3.20	Effect of phenolic acids on ATP-ase activity	67		
4. R	ESULTS			

4.1	Assay of Pi in F-serum	68
4.2	Effect of various factors on the ATP-ase activity in dialysed F-serum	69
4.3	The effect of cations on the activity of ATP-ase in F-serum	70 - 80
4.4	The effect of pH on the cation stimulating ATP-ase	81 - 85

•

1. 5	The effect of pH on the synergistic effects			
4.2	of cations at their optimum concentrations	86		
4.6	The cations effect and their synergism on ATP-ase activity of concentrated buffered dialysed F-serum	87	-	88
4.7	The ATP-ase activity in concentrated buffered dialysed F-serum of healthy and brown bast trees	89	-	92
4.8	Analysis of cations in the dried films of latex	92	-	94
4.9	Clonal variation of ATP-ase activity in concentrated buffered dialysed F-serum	95		
4.10	Isolation and purification of the enzyme	96	-	110
4.11	Clonal variation of ATP-ase activity in bark extracts of healthy and brown bast trees	111	-	112
4.12	The effect of addition of bark extracts on ATP-ase activity in concentrated buffered dialysed F-serum of clone PB 86	112		
4.13	The effect of removal of cations on the ATP-ase activity in bark extracts	113	-	114
4.14	ATP-ase activity patterns in healthy and brown bast extracts of different heights	114	-	116
4.15	Analysis of bark of healthy and brown bast trees for cations	116	-	120
4.16	Effect of selected cation combinations on ATP-ase activity	121		
4.17	Phenolics in bark extracts	122	-	125
4.18	Effect of phenolics on ATP-ase activity in concentrated buffered dialysed F-serum	126	-	129
5. D	ISCUSSION	130	-	145
R	EFERENCES	146	-	162

,

III