### **DEVELOPMENT AND PROPERTY EVALUATION OF**

\$ 3002f

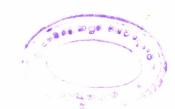
#### **GRANULAR NATURAL RUBBER FOR**

#### VALUE ADDED APPLICATIONS

By

#### Harsha Indrajith Sugathapala

Thesis submitted in partial fulfilment of the requirements for the Degree of Master of Science of the Faculty of Applied Sciences, University of Sri Jayawardenapura, Nugegoda, Sri Lanka.


# 150278

October 1999

150278

#### ABSTRACT

A method for the preparation of granular rubber using a styrene/acrylic co-polymer as the encapsulating agent is described. Two types of lattices, a 1:1 blend of compounded latex & low ammonia TMTD/ZnO stabilised centrifuged latex and low ammonia TMTD/ZnO stabilised centrifuged latex, were used. The method consists of encapsulating the lattices with styrene/acrylic co-polymer by varying the percentages (i.e. 10%, 30% and 50%), followed by coagulation with alum. The reagglomeration of rubber particles was prevented by adding a partitioning agent. The resulting granules were vacuum pumped and air dried. Based on the percentage of polyisoprene content granular rubber with polyisoprene content of over 50% were selected for further study. The two types of granular rubber samples were formulated to the ACS-1 formula, and their rheological and technological properties were evaluated. Also the two virgin granular rubber samples were blended with different proportions of RSS-SLR 20 and formulated to ACS-1 and rheological and technological properties were determined. Analysis of rheological behaviour of the vulcanizates with LATZ and compounded latex have shown that as the percentage of granular rubber of the blends increases the rate of The results show that physical properties such as tensile vulcanization increases. strength, tear strength and abrasion volume, improve by the incorporation granular rubber from LATZ and compounded latex and with a blend of above granular rubber with RSS-SLR 20. This suggests that the presence of compounded latex in the medium improves the reinforcing effect introduced by the acrylic polymer when incorporated into the elastomer.



vi

It could therefore be suggested that when compounded latex is present in latex medium, the encapsulation process is taking place with already partially crosslinked or chemical incorporated rubber particles. Once the encapsulation process takes place it could be difficult the chemical ingredients to react with the rubber particles forming strong crosslinks. Hence the physical properties of the systems with the compounded latex tend to show improved properties.

large number of

latex from Have

s one of the o.

Rubber has gain.

ereat strength, hee

Rubber has foot

milding, commu-

There was a these voyage (1493-14 before this. Between in Haiti, a small (

1.2 Structure of N

Faraday in 1825

CsHs. These r

# CONTENTS

|                       | Page No. |
|-----------------------|----------|
| List of Tables        | i        |
| List of Figures       | ii       |
| List of Abbreviations | . iii    |
| Acknowledgement       | iv       |
| Abstract              | vi       |
|                       |          |

# Chapter One – Introduction & literature survey

| 1.1   | Natural rubber (NR) – Historical background | 1  |
|-------|---------------------------------------------|----|
| 1.2   | Structure of natural rubber                 | 1  |
| 1.3   | Types of natural rubber                     | 3  |
| 1.3.1 | Wild rubber                                 | 3  |
| 1.3.2 | Sheet rubber                                | 4  |
| 1.3.3 | Pale crepe rubber                           | 5  |
| 1.3.4 | Brown crepe rubber                          | 5  |
| 1.3.5 | Technically specified block natural rubber  | 6  |
| 1.4   | Powdered/granular rubber                    | 7  |
| 1.4.1 | Powdered rubber – Early work                | 7  |
| 1.4.2 | Powdered rubber – Recent developments       | 7  |
| 1.4.3 | Advantages of powder processing             | 12 |
| 1.4.4 | Manufacture of powdered rubber              | 12 |

1

| 1.4.4.1 Spray drying of latex        | 13 |
|--------------------------------------|----|
| 1.4.4.2 Flash drying                 | 14 |
| 1.4.4.3 Freeze drying                | 14 |
| 1.4.4.4 Coprecipitation method       | 15 |
| 1.4.4.5 Encapsulating method         | 15 |
| 1.5 Partitioning agents              | 15 |
| 1.6 Aims and objectives of the study | 16 |

-

# Chapter Two – Experimental

| 2.1     | Materials                                             | 17 |
|---------|-------------------------------------------------------|----|
| 2.1.1   | Latices                                               | 17 |
| 2.1.2   | Reagents                                              | 17 |
| 2.1.3   | Other ingredients                                     | 18 |
| 2.1.4   | Equipments                                            | 18 |
| 2.2     | Experimental procedures for raw material preparation  | 20 |
| 2.2.1   | Preparation granular natural rubber                   | 20 |
| 2.2.1.1 | Preparation granular natural rubber with1:1 blend of  | 20 |
|         | Compounded latex and low ammonia TMTD/ZnO             |    |
|         | stabilised centrifuged latex (LATZ latex) - Sample-1  |    |
| 2.2.1.2 | Preparation powdered/granular natural rubber from low | 22 |
|         | low ammonia TMTD/ZnO stabilised centrifuged latex     |    |
|         | (LATZ latex) - Sample - 2                             |    |



| 2.2.1.3 Formulation of granular natural rubber using      | 25 |
|-----------------------------------------------------------|----|
| ACS–1 formula                                             |    |
| 2.3 Standard methods of testing                           | 25 |
| 2.3.1 Determination of polyisoprene content of rubbers    | 25 |
| 2.3.2 Determination of raw rubber properties              | 27 |
| 2.3.2.1 Determination of nitrogen content                 | 27 |
| 2.3.2.2 Determination of dirt                             | 28 |
| 2.3.2.3 Determination of volatile matter                  | 29 |
| 2.3.2.4 Determination of ash content                      | 29 |
| 2.3.2.5 Determination of plasticity retention index (PRI) | 30 |
| 2.4 Characterisation of granular natural rubber           | 30 |
| 2.4.1 Measurement of rheological properties of granular   | 30 |
| natural rubber vulcanizates                               |    |
| 2.5 Determination of technological properties of granular | 32 |
| rubber vulcanizates                                       |    |
| 2.5.1 Determination of tensile properties                 | 32 |
| 2.5.2 Determination of tear strength                      | 33 |
| 2.5.3 Determination of hardness                           | 34 |
| 2.5.4 Determination of rebound resilience                 | 34 |
| 2.5.5 Determination of abrasion resistance                | 36 |
| 2.5.6 Determination of compression test                   | 37 |
|                                                           |    |

### Chapter Three – Results

38

----

Chapter Four – Discussion

| 4.1   | General discussion                 | 58 |
|-------|------------------------------------|----|
| 4.2   | Preparation of granular rubber     | 59 |
| 4.3   | Raw rubber properties              | 60 |
| 4.3.1 | Polyisoprene content               | 60 |
| 4.3.2 | Raw rubber properties              | 60 |
| 4.4   | Rheological properties             | 61 |
| 4.4.1 | Samples-1 and Samples-2            | 61 |
| 4.4.2 | Samples–1A, 1B, and 1C             | 63 |
| 4.4.3 | Samples–2A, 2B, and 2C             | 64 |
| 4.5   | Technological properties           | 65 |
| 4.5.1 | Tensile properties of the samples  | 65 |
| 4.5.2 | Tear strength of the samples       | 66 |
| 4.5.3 | Resilience rebounce of the samples | 66 |
| 4.5.4 | Abrasion vloume of the samples     | 67 |
| 4.5.5 | Compression set of the samples     | 68 |
| 4.6   | Conclusion                         | 69 |

#### References

.

70

-