

DEVELOPMENT OF A POROUS PIPE USING RECYCLING RUBBER/POLYETHYLENE, TO IMPROVE MICRO-IRRIGATION SYSTEM IN SRI LANKA.

ΒY

W. V. NILANGA DAYARATNA

174360

M.Sc. (Polymer Science and Technology)

December 2003

f. 3000

ABSTRACT

The porous pipe is a one of the emitter type utilizing in the agricultural field which is used in the micro – irrigation system to maintain under ground moisture content. The product is along flexible hose made out from recycle rubber and plastic binder. As per the end –use requirements product should consist of both technical and agricultural nature. Hence product should satisfy technical requirements that are needed to improve product quality and properties as well as needs of the agricultural field requirements (eg: excellent water discharge rate).

The project study was aimed to developing a porous pipe at a price very much competitive to similar products that are available in the market such as drip ,trickle, spray.

The project works mainly based on the formula developments and process developments. The formula development was carried out working on number of formulations based on the plastic binder and vulcanized rubber powder (crumb) and their blends. Process development was carried out based on the temperature settings of the extruder barrel and the mixing characteristics of the blends.

The finished product was tested on range of application requirements such as strength properties (Tensile strength & tear strength), resistance properties (UV, ESCR, Chemical resistance) ability of water dischargebility through a wall, pressure existence, durability, density of the product.

The appropriate tensile and other physical properties and measurement of water discharge rate

Π

were carried out on all samples. UV, ESCR chemical resistance properties were tested on selected samples to make sure the developed sample properties. Field tests were carried out on selected finished product samples to conform field compatibility. Obtained results were evaluated to identify the most suitable compound composition that has yielded the best compromise of process ability parameters and performance characteristic.

After careful examination of performance application and quality aspects of the product, a process was developed for commercial implementation with a competitive price. Because of the use of recycling rubber as a major component the product should be rather price competitive and also it is as a major solution for a growth of the disposable tire amount in the environment.

The project is fully implemented in a company of D. Samson industries and expecting to continue this to spread and growth specially in local market and also foreign market.

CONTENTS

Acknowledgments	Ι
Abstract	II
List of figures and graph	!V
List of tables	VI
Abbreviations	VIII

Chapter1.0: INTRODUCTION

1.1.	Historical background	1
1.2.	Porous/leaky pipe	2
1.3	Micro irrigation system	3
1.4	Application of the product	3
1.5	Crystalline polymer	4
1.	5.1. Degree of crystallization	4
1.	5.2. Crystalline lamellae	5
1.	5.3 Morphology of semi crystalline polymer	6
1.	5.4. Thermal properties of crystalline polymer	9
1.6	Polyethylene	11
1.	6.1 Introduction	11
1.	6.2 Structure and properties of polyethylene	11
1.	6.3 Properties of polyethylene	13
	1.6.3.1 Mechanical properties	13
	1.6.3.2 Thermal properties	16
	1.6.3.3 Chemical properties	16
1.	6.4. Linear low density polyethylene	18
1.	6.5 Processing characteristics of Polyethylene	18
1.7 .	Melt flow index value of plastic materials	19
1.8	Rubber crumb	20
1.9	Plastic and rubber blends	21

1.9.1 Melt mixing of plastic blend	21
1.9.2 Morphology of vulcanized rubber and	
plastic blend	22
.10. Scope of the project	23

Chapter 2.0 : EXPERIMENTAL

2.1 Study of methodology	24
2.2. Experimental plan	24
2.3 Product characteristics and specifications	25
2.3.1 Standard dimensions and criteria of	
the product	25
2.3.1.1 Dimensions	25
2.3.1.2 Criteria	26
2.3.2 Study of product characteristics and properties	
with end-use	27
2.4 Product development (R & D Activities)	
2.4.1.Compound developments	29
2.4.1.1.Selection of the materials	29
2.4.1.1.1. Selection of the suitable grade	
of recycle rubber powder	29
2.4.1.1.2. Selection of suitable binder	30
2.4.1.2 Selection of the suitable Melt index (MI)	
value of LLDPE	30
2.4.1.3. Selection of suitable compound composition	32
2.4.2. Process developments	33
2.4.2.1. Production process	33
2.4.2.2. Machineries	34
2.4.3 Process performance trials	36

3.1.4.1. Variation of the discharge rate with the	
rubber composition	54
3.1.4.2. Examination of the emit discharge rate	
with different working pressure	55
3.1.4.3. Change of the emit flow rate with the	56
testing length of the pipe	56
3.1.4.4. Examination of the effect of strength of	57
the water source for pressure loss	57
3.1.4.5. Determination of the maximum pressure	
which can work through a pipe without	
effecting to any stretching or other defect	
for a pipe	59
3.1.5. Examination of the chemical resistance	
properties	59
3.1.6 Examination of the ESCR property	60
3.1.7 Strength properties of finished product	60
(before & after aging)	
3.1.8. Density values	61
3.2. Discussion	61
3.2.1. Selection of the suitable binder	61
3.2.2. Selection of suitable melt index value	64
3.2.3. Selection of suitable compound composition	65
3.2.4 Evaluation of performance test and field test	66
3.2.4.1. Determination of water discharge rates	66
3.2.4.2. Chemical resistance property and aging	
property	68
3.3 Conclusion	70
3.3.1 Advantages	71
3.3.2. Future works for a project	72