r1H355 2009 0

f. 3000

ن معلمات الاروب الأ

The Development of Rubber/Polyethylene Compounds from Recycled Waste

By

Anne Fernando

A project report submitted in partial fulfilment of the requirements for the award of Master of Science in Polymer Chemistry & Technology For University of Sri Jayawardenepura

174355

September 2003

Abstract

In recent years, elastomeric rubber-plastic blends have become technologically interesting for use as thermoplastic elastomers (TPE). They can have many of the properties of rubbers, but they can be processable as thermoplastics.

This project looked into the processing conditions and upscalling of recycled rubber/plastic blends. Recycled elastomers were obtained from commercial sources, and included a mixture of styrene-butadiene rubber (SBR), and natural rubber (NR), with two different mesh sizes. A blend of recycled Linear Low Density Polyethylene (LLDPE) and Low Density Polyethylene (LDPE) was used as the thermoplastic polymer matrix.

In this study, the crumb rubber and polyethylene has been characterised. Then having noted some of their properties, rubber/plastic blends were prepared by melt mixing, in a Haake Batch mixer varying test temperature and residence time.

Four different compatibilization techniques were used to improve the compatibility at the interface between the rubber particles and polyethylene, these were: 1) Titanate Coupling Agent, 2) Silane, 3) IBE (ethylene-co-glycidyl methacrylate) 4) Delinker.

Attempts were also made to assess the extent to which the devulcanization system scissions the crosslinks in the rubber vulcanizate by means of an experimental grade delinker.

Results indicate that the best method of processing was melt blending in a Haake batch mixer compared to a twin screw extruder. A 32% improvement was found for the control blend when blended in the Haake mixer compared with the twin-screw extruder. IBE compatibilized blends and delinked rubber/plastic blends gave better tensile properties when compared with silane and titanate coupling agents compatibilized blends. Delinked, rubber/NR compounds also had superior elongational capability. Recycled elastomers with smaller particle size were observed to improve mechanical properties of resultant blends.

TABLE OF CONTENTS

Pa	ge
Acknowledgements	i
Abbreviations	ii
Abstract	iii
Declaration	iv
Certification	V
Contents	vi
List of Figures	Х
List of Tables	xiv
CHAPTER 1 : Introduction & Literature Review	1
1.1. Introduction 1.1.1 Plastic Product Recycling	1 1
1.1.2 Recycling of Waste Rubber	2
1.1.3 Rubber Modified Thermoplastics	2
1.1.4 Aims and Objectives	3
1.2 Literature Review	
1.2.1 Introduction	4
1.2.2 Scrap Tire Recycling	5
1.2.3 Rubber Crumb as a Filler	7
1.2.4 Schematic Representation of Rubber Crumb	8
1.2.5 Advantages of Reclaimed Rubber	8
1.2.5.1 Easy breakdown and mixing time	9
1.2.5.2. Lower power consumption during breakdown and mixing	9
1.2.5.3 Advantages in calendaring and extrusion	9
1.2.5.4 Influence of tack behaviour	9

ngd Da

Q 13 8 8 9 6 6

0			
(.0	nte	ents	

1.2.5.5 Influence on curing and aging	9			
1.2.5.6 Cost and energy savings	10			
1.2.6 Rubber Reclaiming Processes				
1.2.7 Mechanism of Reclaiming				
1.2.8 Physical effects of the reclaiming mechanisms	13			
1.2.9 Size reduction of rubber particles	14			
1.2.10 Polyethylene as a matrix polymer	15			
1.2.11 Molecular structure of Polyethylene	16			
1.2.12 Types of Polyethylenes	16			
1.2.13 Identification of the different polyethylene types by FTIR				
Spectroscopy	18			
1.2.14 Plastic Product Recycling	20			
1.2.15 Melting point and crystallization behaviour for recycled				
polyethylene	21			
1.2.16 LDPE/LLDPE Melt Blends	22			
1.2.17 Rubber Plastic Composites	23			
1.2.17.1 Advantages of cryogenically ground rubber over ambient				
ground rubber	23			
1.2.17.2 Importance of mesh size/particle size	24			
1.2.17.3 Effect of rubber particle size on the Impact Energy and				
viscosity of the composite	24			
1.2.17.4 Effect of rubber particle size on stress-strain properties	25			
1.2.17.5 Effect of shape and surface area of rubber crumb on				
stress-strain properties of rubber/plastic blends	26			
1.2.17.6 The effect of branching/crystallinity on rubber/plastic				
blend	26			
1.2.18 The role of compatibilizers	26			
1.2.19 Compatibilization Techniques	28			
1.2.19.1 Preparation of reclaimed rubber by DE-Link process	28			
1.2.19.2 Ethylene-co-glycidyl methacrylate (IBE)	32			
1.2.19.3 Silane	33			
1.2.19.4 Titanate and Zirconate Coupling Agents	34			
1.2.19.5 Blending with Natural Rubber	35			

C	CHAPTER	2 : Experimental Detail	37
	2.1 Ma	aterials Used	37
		2.1.1 Polyethylene as the matrix polymer	37
		2.1.2 Rubber Crumb	37
	2.2 Co	ompatibilizers and Coupling Agents	38
		2.2.1 Poly(ethylene-co-glycidyl methacrylate) polymer (IBE)	38
		2.2.2 Delinker	38
		2.2.3 Coupling Agent	38
		2.2.4 Silane based Coupling Agent	38
	2.3	Moisture Test	38
	2.4	Compounding	39
		2.4.1 Dry Blending	39
		2.4.2 Melt Blending	39
		2.4.3 Twin Screw Extrusion	39
	2.5	Compounds Formulated	41
	2.6	Specimen Moulding	44
	2.7	Melt Flow Analysis	44
	2.8	Characterization of Moulded Blends	45
		2.8.1 DSC	45
		2.8.2 Infrared Spectroscopy	46
	2.9	Tensile Properties	47
	2.10	SEM	48
		2.10.1 Instrumentation	48
		2.10.2 Sample Preparation	48
	2.11	Statistical Analysis	49
(Chapter 3	: Results and Discussion	50
	3.1	Characterization of Materials	50
		3.1.1 DSC	50
		3.1.1.1 Characterization of polyethylene	50
		3.1.1.2 Characterization of polyethylene/rubber crumb	
		Blends	53

viii

		3.1.2	FTIR	54
			3.1.2.1 Characterization of polyethylene	54
			3.1.2.2 Characterization of rubber crumbs	56
			3.1.2.3 Characterization of rubber/plastic blends	57
3.2 Melt Flow In			low Index of recycled and virgin polyethylenes	58
3	3.3	Moisture Content		
3	3.4 Dry Blending			59
3	3.5	Melt Blending		60
		3.5.1	Influence of Temperature	60
		3.5.2	Influence of Composition	62
			3.5.2.1 Tensile Properties	62
			3.5.2.2 Crystallinity of blends	65
			3.5.2.3 Effect of MFI and crystallinity on processing and	
			Mechanical properties	66
			3.5.2.4 SEM examination	68
		3.5.3	Influence of rubber particle size	71
3	3.6	Blend	Compatibilization	73
		3.6.1	Effect of Silane	74
		3.6.2	Effect of Titanate Coupling Agent	77
			3.6.2.1 Processing	81
		3.6.3	Effect of IBE	82
			3.6.3.1 Morphology of IBE compatibilized blends	85
		3.6.4	Effect of Delinker	86
	3.7 Effect of Delinker with rubber crumb and natural rubber		of Delinker with rubber crumb and natural rubber	
		mixtu	res without polyethylene	90
		3.7.1	Morphology of rubber crumb and NR blends with Delinke	r 93
-	3.8	Scalin	g up of compound formulations using the Twin Screw	
		Extruc	ler	95
Conclu	usions	5		98
Future	Future work			98
References				
Appen	ndix		e de la companya de l La companya de la comp	106

ix