A. 3000L

USE OF POLYAMIDE MEMBRANES

IN REVERSE OSMOSIS

TO PURIFY SALT WATER

By

W. A. Rushan Fernando

174359

M.Sc. (Polymer Science & Technology)

2003 – December

USE OF POLYAMIDE MEMBRANES

IN REVERSE OSMOSIS TO PURIFY SALT WATER By W. Alex Rushan Fernando

ABSTRACT

Salt-water analysis was carried out as a preliminary investigation in designing a drinking water treatment plant. Operating conditions such as pressure and flow rate of the plant were selected according to the daily water requirement.

Polypiperazinamide (PA), an aromatic type polyamide used with polysulfone (PS) in 3:1 ratio (by weight) to prepare a composite type spiral wound membrane to be used in Reverse Osmosis (RO) System in the plant.

Pretreatment processes reduced Total Suspended Solids and Hardness in water. Electrical Conductivity, Total Dissolved Solids and Chloride ion were removed using the made RO membrane. The percentage of rejection of PA/PS RO membrane was 99.9 %. Therefore this type of polymeric composite membrane could be used as RO membrane to produce good quality drinking water by desalination of salt water.

CONTENTS

List of figures		iv
List of scheme		iv
List of tables		v
Abstract		vi

CHAPTER I

1.	Introduction	1
1.1	Types of Water	3
1.1.1	Sea Water Constituents	5
1.1.2	Salt Water Purification	7
1.2	Need of the Pretreatment	7
1.2.1	Pretreatment Stages for Salt Water and Seawater in Desalination Plants	8
1.2.1.1	Flocculation	8
1.2.1.2	Softeners	9
1.2.2	Separation of Particulate Matter	9
1.3	Common Technologies to Reduce the Concentration of Salts	10
1.3.1	Electrodialysis	11
1.3.2	Ion Exchange	11
1.3.3	Transmembrane Distillation	12
1.3.4	Reverse Osmosis	13
1.3.4.1	Applications of Reverse Osmosis Process	18
1.3.4.1.1	Drinking Water Including Post-Treatment	18

i

1.3.4.1.2	Industrial Water	18
1.3.4.1.3	Technology for Medical Purposes	18
1.3.4.1.4	Desalination of Salt Water and Seawater	19
1.3.4.2	RO Desalination Membranes	19
1.3.4.3	Modules	25
1.3.4.3.1	Hollow Fiber Module	26
1.3.4.3.2	Tubular Module	28
1.3.4.3.3	Modules with Flat Membranes	28
1.3.4.4	Composition of a Reverse Osmosis Plant	30
1.3.4.5	Requirements for the Membrane Materials	31
1.4	Corrosion Problems in the Desalination of Seawater	32
1.4.1	Outline of Materials	33
1.4.1.1	Non-Alloyed Steel	33
1.4.1.2	Stainless Steels	33
1.4.1.3	Copper Alloys	34
1.4.1.4	Nickel Alloys	34
1.4.1.5	Aluminum Alloys	35
1.5	Problem in Republic of Maldives	35
1.6	Objectives of Study	36

CHAPTER II

.

2.	Experimental	37
2.1	Materials	37
2.2	Preparation of Membranes	37

2.3	Analysis of water quality	37
2.4	Seasonal Variation of Water quality	38
2.5	Pretreatment of Salt Water	39
2.5.1	Separation of Particulate Matter	39
2.5.2	Removal of Hardness	40
2.5.3	Removal of Fine Particles	42
2.6	Layout of the Plant	42
2.6.1	Raw Water Supply Tank	42
2.6.2	Raw Water Transfer Pump	42
2.6.3	Dual Media Filter, Anthracite Filter and Softener	44
2.6.4	Micron Cartridge Filters	44
2.6.5	High Pressure Pump	44
2.6.6	RO System	45
2.6.7	Ultra Violet System	45
2.7	Raw Water Characteristics After Pretreatment	45
2.8	Desalination by Reverse Osmosis	46
2.9	Analysis of Treated Water	46

CHAPTER III

3.	Results and Discussion	47
3.1	Analysis of Water Quality	47
3.2	Seasonal Variation of Water Quality	48
3.3	Raw Water Characteristics After Pretreatment	50
3.4	Analysis of Drinking Water	51

Conclusion	52
Further Studies	53
Appendix 1	54
References	55

LIST OF FIGURES

Figure 1.1 – A scheme for an osmotic power plant	15
Figure 1.2 – Hollow fiber module	27
Figure 1.3 – Module with a polyamide membrane	27
Figure 1.4 – Spiral-wound module, axial flow	29
Figure 1.5 – Plate-type module	30
Figure 2.1 – diagram of a softener with valves	41

LIST OF SCHEME

Scheme 2.1 – Flow chart of treatment scheme

43