NUTRITIONAL EVALUATION AND INFLUENCE ON CARBOHYDRATE AND LIPID METABOLISM OF PORRIDGE MADE WITH GREEN LEAFY VEGETABLES

Senadheera Pathirannehelage Anuruddhika
Subhashinie Senadheera

Ph.D 2014
Nutritional evaluation and influence on carbohydrate and lipid metabolism of porridge made with green leafy vegetables

Senadheera S.P.A.S

ABSTRACT

Among Sri Lankans, 20% are diagnosed as disglycaemic and 27.1% suffer from metabolic syndrome (MS). Along with western medical treatments, 90% of Sri Lankan patients consume herbal remedies owing to their nutritive value, natural origin, availability and less side effects. Rice-based herbal porridge (*kola kenda*) is a popular method of consumption of herbal extracts due to high palatability and high satiety compared to water extracts. Most leaf extracts used for porridges have scientifically proven anti-diabetic effects. However, the potency when these leaves are incorporated into porridges is not known. The endeavor of the present study was to evaluate the nutrient composition, glycaemic indices (GI), antioxidant potential and toxic effects and hypoglycaemic effects of herbal porridges, with the intention of developing a marketable herbal porridge suitable for diabetics.

Rice: leaves: scraped coconut were used in 20-30g: 5-20g: 10-15g [w/w/w] ratio for the porridge preparation. The leaf varieties used were *Murraya koenigii spreng* (Karapincha), *Asparagus racemosus* (Haathawariya), *Hemidesmus indicus* (Iramusu), *Aegle marmelos* (Beli), *Cassia auriculata Linn* (Ranawara), *Cardiospermum halicacabum* (Wel Penela), *Aerva lanata* (Polpala), *Clitoria ternatea Linn.* (Ela katarolu), *Scoparia dulcis* (Walkothhamalli), *Atlantia zeylanica Linn.* (Yaki narang), *Osbeckia octandra* (Heen bovitiya) and *Coccinia grandis* (previous name: *Cephalandra indica*) (Kowakka). Porridge made with rice only and coconut milk and rice only were
used to evaluate the effects of other ingredients of the porridge other than the leaf extract. Digestible carbohydrate, fat, insoluble and soluble dietary fibre, crude protein, ash and moisture contents of the porridges were estimated by accepted standard methods. GI, antioxidant effects (ABTS free radical scavenging assay) and total phenol content were estimated for all 14 porridges. Using the porridges with lowest GI [A. racemosus (AR), H. indicus (HI) and S. dulcis (SDC)] an animal bioassay was conducted with Streptozotocine-induced diabetic male albino Wistar rats for 3 months to evaluate the hypoglycaemic and toxic effects of these porridges. S. dulcis porridge which elicited a significant hypoglycaemic effect in the above study was prepared in large scale (GI for normal 58±11, diabetics 61±11). A crossover clinical trial with type 2 diabetic patients (n=35; group 1=16; group 2=19) was conducted to observe the hypoglycaemic effects and capability of this porridge on lowering risk factors of diabetes. Dietary habits of Sri Lankan type 2 diabetics were assessed by an interviewer administered questionnaire.

Moisture was the major component in all porridges (89% - 93%). Digestible carbohydrate contents in leafy porridges were not significantly different (p≥0.05). Total dietary fibre contents, crude protein content and fat content varied between 5% - 10%, 4.1% - 9.5% and 2.5 % - 27%, respectively on dry weight basis. The lowest fat amount was in rice porridge due to absence of coconut milk. All porridges except C. auriculata were in the low GI category (31-50). The lowest GIs were found in coconut milk (31±5), Aerva lanata (32±5), Hemidesmus indicus (40±8), Scoparia dulcis (39±8) and Asparagus racemosus (37±4). All leafy porridges elicited antioxidant effects (5 - 73 TEAC (μg)/ 100g) and high phenol contents (1.9 - 34.2 GAE g/ 100g) with lowest
values for rice and coconut milk porridges, indicating that antioxidant effect was mainly due to the leaf extract.

In the animal study, although not significant (p≥0.05), SDC group had lower mean blood glucose levels (194±73, 283±98 mg/dL in second and third months, respectively) compared to diabetic control group (298±94, 385±55 mg/dL). A significantly higher (p≤0.05) mean weight gain was observed in SDC porridge fed group (39 g), when compared to the other diabetic groups (DM 3, HI -8, CM 7 g). HbA1c level in SDC group (5.8±2.1%) was significantly lower (p=0.018) than the DM group (8.0±1.5%) while other porridge groups elicited no significant changes when compared with DM group. Although not significant (p≥0.05) when compared to other diabetic groups, the lowest total cholesterol (119±20.6 mg/dL) and highest HDL (33±6.3 mg/dL) against NC was also observed in SDC group. The CRP (<6 mg/dL), creatinine (range - 0.41±0.1-0.51±0.1 mmol/L), AST (range - 69.7±10.2 - 88.9±15.1 IU/L), ALT (range - 23.7±2.1 - 27.6±3.6 IU/L) and gamma glutamyl transferase (GGT) (range - 3.0±1.7 - 4.6±0.9 IU/L) concentrations of the diabetic groups were comparable with the normal control group indicating no adverse effects on liver and kidney due to porridge consumption.

Mean age of patients who participated in the questionnaire study was 55±9 years. In the study population 44 were males and 56 were females. Only 72% of the patients attended diabetes clinics regularly. Out of all, 44% of patients were either overweight or obese. Majority (83%) consumed red rice/ nadu/ parboiled rice which are suitable for diabetics. Only 67% consumed fruits at least once a day. High GI meals for 5 or more than five days/ week as the breakfast was consumed by 17.8% while for 3 or more than 3 days/
week as dinner was 13.3%. From the study population 87%, 93% and 92% did not consume pork, beef and mutton respectively. Thirty three percent consume high fat diets (fried foods) twice or more than twice/ week. Full cream milk was consumed by 71% and 22% consumed non fat milk. Normal sweetened foods were consumed by 99% and non caloric sweetener usage was nonexistent. From the population, 40%, 50%, 69% and 11% had been detected to have hypertension, high cholesterol, visual defects and heart diseases respectively. Only 14% exercised daily while 69% never exercised.

During the crossover clinical trial with commercially prepared SDC porridge being ingested three times per week, HbA1c of group 1 decreased from 7.9±0.46 to 6.5±0.30 (p=0.003) while HbA1c of group 2 decreased from 7.0±0.31 to 6.7±0.24 while they were in the test group. Therefore, both test groups (1 and 2) elicited a decrease in HbA1c compared to control groups. Likewise though not significant, both test groups elicited a decrease in FBG following the intervention (group 1 - from 174±14 to 160±10 mg/dL; group 2 - from 183±13 to 160±7 mg/dL). No significant differences (p>0.05) in insulin levels between or within groups were observed during study periods. When considering the lipidaemic measurements no significant differences between or within the groups 1 and 2 were observed for total cholesterol, triglycerides, LDL and HDL measurements and atherogenic index. All liver enzymes, creatinine, urea, cortisol, ferritin and CRP measurements were not significantly different between or within groups during both study periods (1 and 2) indicating absence of liver or kidney toxicity due to ingestion of SDC porridge.
Study revealed, all leafy porridges elicit low GI, have considerable antioxidant potential and therefore are suitable as a meal for diabetics. The *S. dulcis* porridge with positive anti-diabetic properties was commercially produced by changing the particle size of rice grains. The porridge contributed to decrease HbA1c significantly with a non significant decline in fasting blood glucose with no toxicity in diabetics, due to long term consumption.
3.4.2 Estimation of antioxidant potential and total phenolic content of porridges

3.4.2.1 Antioxidant potential of green leafy porridges (ABTS free radical scavenging assay) ... 85

3.4.2.2 Total polyphenol content .. 86

3.4.3 Estimation of GI and GL of porridges .. 87

3.4.3.1 Normal individual sample selection ... 87

3.4.3.2 Glycaemic Indices (GI) of porridges in normal individuals 88

3.4.3.3 Glycaemic Load .. 89

3.4.3.4 Ethical approval ... 89

3.4.4 Estimation of hypoglycaemic and hypolipidaemic effects of selected porridges – animal bioassay .. 90

3.4.4.1 Animal Bioassay .. 90

3.4.4.2 Animals .. 90

3.4.4.3 Induction of diabetes in test rats ... 90

3.4.4.4 Diets .. 91

3.4.4.5 Weights and behaviour of rats .. 92

3.4.4.6 Serum parameters ... 92

3.4.4.7 Organ weights ... 93

3.4.4.8 Ethical approval ... 93
3.4.5 Studies with diabetic patients .. 93

3.4.5.1 Questionnaire study - Observation of the dietary patterns
and usage of leafy porridges/ herbal remedies by type 2
diabetic patients ... 93

3.4.5.2 Preparation of Scoparia dulcis porridge according to
commercial production procedure ... 93

3.4.5.3 Estimation of GI and GL... 96

3.4.5.4 Ethical approval ... 97

3.4.5.5 Estimation of hypoglycaemic effects of herbal porridge
made of Scoparia dulcis leaves – clinical trial 98

3.4.5.6 Ethical approval ... 103

3.4.6 Statistical analysis... 103

4 RESULTS .. 105

4.1 Nutrient composition of porridges .. 105

4.2 Antioxidant potential of porridges ... 110

4.3 GI and GL of porridges .. 116

4.3.1 Fasting blood glucose values of individuals 116

4.3.2 GI and GL values ... 117

4.3.3 Glycaemic response ... 121

4.3.4 Correlation between GI and macronutrients 124

4.4 Animal Bioassay ... 124
4.4.1 Food, water intake and change in weight ... 124
4.4.2 Behavioral changes and mortality rate .. 126
4.4.3 Blood glucose concentration .. 127
4.4.4 Lipidaemic measurements and CRP .. 128
4.4.5 Liver and kidney related measurements ... 130
4.4.6 Appearance and weights of internal organ 132

4.5 Observation of dietary patterns of T2DM patients 133

4.5.1 Study population ... 133
4.5.2 Awareness on overweight or obesity ... 133
4.5.3 Consumption of main and other meals ... 133
4.5.4 Consumption of sweetened foods .. 136
4.5.5 Prevalence of diabetes related complications 136
4.5.6 Physical exercises ... 137

4.6 Development of S. dulcis porridge (with a medium GI) in commercial scale .. 137

4.6.1 GI and GL of the porridge ... 137
4.6.2 Particle size distribution of porridges ... 140

4.7 Clinical trial with S. dulcis porridge .. 142

4.7.1 Study population ... 142
4.7.2 Glycaemic measurements .. 142
4.7.3 Lipid measurements .. 144