COMPARATIVE STUDY OF MICROHABITAT UTILIZATION BY SEEDLINGS OF CANOPY DOMINANT TREE SPECIES IN TROPICAL RAIN FORESTS OF SRI LANKA

BY

RANASINGHE DISANAYAKALAGE SHERLY SHELTON RANATHUNGA

Thesis submitted to the University of Sri Jayewardenepura for the award of the Degree of Master of Philosophy in Forestry on Tropical Forest Ecology.
COMPARATIVE STUDY OF MICROHABITAT UTILIZATION BY SEEDLINGS OF CANOPY DOMINANT TREE SPECIES IN TROPICAL RAIN FORESTS OF SRI LANKA

R.D.S.S Ranathunga

ABSTRACT

Deforestation and forest degradation are more severe in the tropics that have serious consequences for species, tropical forest ecosystem services and people who depend on forests for their livelihoods. Therefore, knowledge on germination and seedling establishment is important for understanding such community processes as plant recruitment and succession, which is useful for the reforestation, and restoration of degraded forest areas. This study focused to identify variation of seedling leaf anatomy, leaf morphology, seedling growth and mortality along a gradient in light availability ranging from forest understories to small canopy gaps and elevation ranging from low elevation to high elevation in tropical rain forests of Sri Lanka.

The study was carried out at three different elevations in the wet evergreen mixed Dipterocarp rainforest of southwest Sri Lanka. The selected sites were Waga Forest Reserve ((6°.55’N, 80°.10’E: 125 ± 50 m asl), Sinharaja World Heritage Site (6°.45’N, 80°.30’E: 580 ± 250 m asl) and Eastern region of Sinharaja (6°.40’N, 80°.40’E: 1200 ± 200 m asl). For this study, four Shorea species, one Dipterocarpus species, two Syzygium species and two Mesua species were selected. Experiments were designed to investigate competitive outcomes of these species in different light (canopy gap and understory) and elevations (low elevation, valley, mid-slope, ridge and high elevation). The experiment comprised 5184 seedlings of nine species (16 seedlings \(\times 9 \) species per plot \(\times 2 \) plots per site \(\times 14 \) sites).
To find out the competitive growth of the selected nine species along the light and elevation gradient, seedling height from the top of the apical shoot to the ground, root collar diameter, number of leaves and branches were measured every year. Six leaf extractions of each species in micro-sites at each elevation were prepared to determine area base Chlorophyll a, b, a/b ratio and total Chlorophyll using a spectrophotometric method. One hundred and eight leaf surface impressions were taken from each species in micro-sites at each elevation to analyze stomatal density and aperture length. Leaf herbivory damage and proportion of damage leaves were measured in all plots that represent the elevation gradient. Three thousand five hundred and twenty five leaves from nine species in micro-sites at all elevation were sampled and leaf morphological parameters were measured. Specific leaf area, specific leaf mass, leaf shape index, leaf dry matter content and leaf water content were derived and analyzed.

Shorea trapezifolia and *S. rubicundum* can be regarded as the more light demanding species, competitively superior as evidenced by their height increment, root collar diameter increment, leaves and branch increment and their morphological adjustment. On other hand *Mesua ferrea* and *S. worthingtonii* can be considered as more shade tolerant species and with less competitive ability as compared to other species because of their slow growth rate and high survival under low light availability. Results revealed that leaf area, leaf length, leaf width, drip tip length and petiole length of all species in canopy gaps had higher values than the respective species in the understory conditions. *Shorea trapezifolia*, *D. zeylanicus* and *S. rubicundum* in the canopy gaps had the highest specific leaf area. The slow growing *M. ferrea*, *M. nagassarium* and *S. worthingtonii* in the canopy gaps showed the highest leaf dry matter content and the lowest leaf water content. It was demonstrated that *S. makul* and *S. rubicundum* had the highest stomatal
density and regarded as drought intolerant, while *S. disticha*, *S. megistophylla* and *S. worthingtonii* in the gaps recorded the lowest stomatal density as an adaptation to drought or water deficient conditions.

Comparing the gaps *Dipterocarpus zeylanicus*, *M. ferrea*, *S. trapezifolia* and *S. worthingtonii* in the gap centers recorded highest Chlorophyll a concentration, while, *D. zeylanicus*, *M. ferrea*, *S. disticha* and *S. megistophylla* had the highest Chlorophyll b concentration. It revealed that the gap leaves of non-*Dipterocarp* species tended to have a higher Chlorophyll content per unit leaf area than understory leaves. However, the opposite trends were reported for *Dipterocarp* species.

This study contributes to our understanding of canopy dominant tree seedling growth response and leaf morphological and stomatal variation to the influence of light and elevation. This understanding will help to identify suitable species to plant under different light conditions and different elevations for the purpose of the development of regeneration methods for the management of tropical wet forests. In addition to that, the study facilitated the ability to rank shade tolerance and drought tolerance of each study species. Further work is necessary to understand physiological performance of these species under field conditions.
TABLE OF CONTENTS

TABLE OF CONTENTS i
LIST OF TABLES iv
LIST OF FIGURES vii
LIST OF PLATES x
ACKNOWLEDGEMENT xi
ABBREVIATIONS xii
DEDICATION xiii
ABSTRACT xiv
CHAPTER 1: INTRODUCTION 01
 1.1 General Introduction 02

CHAPTER 02: LITERATURE REVIEW
Micro-site variation in light availability, seedling growth, seedling mortality and herbivory in tropical lowland rain forests 10
 2.1 Tree fall gaps in tropical forest 11
 2.1.1 Gap formation and gap characteristics 11
 2.1.2 Gaps maintain species diversity in forests 12
 2.2 Light environments in tropical forests 12
 2.2.1 Light quality and quantity 12
 2.2.2 Whole-plant light requirements 13
 2.2.3 Light environments and seedling growth 14
 2.3 Height increment of seedlings indicates competition for light 16
 2.4 Interactions among species distribution and topographic gradients 17
 2.5 Seedling mortality 18
 2.5.1 Reasons for seedling mortality in tropical forests 18
 2.5.2 Drought effects to seedling mortality 20
 2.5.3 Seedling mortality in different topographic positions 21
 2.6 Herbivory 22
 2.6.1 Herbivory along a forest elevation gradient 25

CHAPTER 03: LITERATURE REVIEW
Foliar morphological and physiological plasticity along a natural light gradient 26
 3.1 Introduction 27
 3.1.1 Sun and shade leaves 28
 3.2 Leaf morphological variations in different environments 29
3.2.1 Leaf size
3.2.2 Leaf length to leaf width ratio
3.2.3 Petiole length and petiole diameter
3.2.4 Length of drip-tip
3.2.5 Plant branching and branching patterns
3.3 Specific leaf area
3.4 Specific leaf weight
3.5 Leaf dry matter content
3.6 Influence of light level and elevation to stomata
3.7 Leaf Chlorophyll concentration

CHAPTER 04: STUDY OBJECTIVE AND HYPOTHESIS
4.1 Study objective and hypothesis
 4.1.1 Study objective
 4.1.2 Hypothesis
 4.1.3 Overarching Hypotheses
4.2 Study sites
4.3 Study species

CHAPTER 05: METHODS AND MATERIALS
5.1 Experimental design
 5.1.1 Selecting gaps and understory sites for the study
 5.1.2 Seedling planting and establishment
5.2 Seedling growth and mortality measurements
 5.2.1 Above-ground measurements
 5.2.2 Seedling mortality
5.3 Leaf herbivory measurement
5.4 Measurement of leaf functional traits
 5.4.1 Leaf area, leaf length, leaf width, petiole length and length of drip-tips
 5.4.2 Leaf weight measurement
5.5 Leaf anatomical measurements
5.6 Spectro-Photometric measurement
5.7 Statistical interference

CHAPTER 06: RESULTS - GROWTH AND MORTALITY
6.1 Growth measurements
 6.1.1 Annual height increment
 6.1.2 Root collar diameter increment
 6.1.3 Leaf increment
 6.1.4 Branch increment
 6.1.5 Seedling Mortality
6.2 Herbivory damage