SERUM CYSTATIN C AS A MARKER IN THE ASSESSMENT OF RENAL FUNCTION IN PATIENTS WITH RETINOPATHY AND MILD TO MODERATE DIABETIC NEPHROPATHY

BY

NADEEJA NIRANJALIE WIJAYATUNGA

Thesis submitted to the University of Sri Jayewardenepura for the award of the degree of Master of Philosophy in Biochemistry on 8th of April 2014.
Serum Cystatin C as a marker in the assessment of renal function in patients with retinopathy and mild to moderate diabetic nephropathy
Nadeeja Niranjalie Wijayatunga

ABSTRACT

Introduction: Serum cystatin C (CysC) has been described as a promising marker of GFR. However there are no literature on performance of CysC in nephropathy and retinopathy (DR), in Sri Lankan type 2 diabetic patients (T2DM).

Objectives: To determine correlation between serum CysC and Serum Creatinine (SCr), Albumin to Creatinine Ratio (ACR), and estimated glomerular filtration rate based on Modification of Diet for Renal Disease study equation (eGFR-MDRD) in both T2DM patients and healthy adults, to compare CysC levels in T2DM subjects with mild to moderate diabetic nephropathy with age and gender matched healthy individuals and also to identify the correlation of DR in those selected T2DM patients with Cys, SCr, eGFR-MDRD and ACR.

Methods: Sixty one T2DM patients with possibility of mild to moderate renal impairment, and 118 apparently healthy adults, between 30-60 years were enrolled. Out of the 118 healthy adults, 61 were age and gender matched with the T2DM patients. Retinopathy status was assessed by slit lamp examination. SCr and CysC and urine creatinine and albumin were measured. ACR and eGFR-MDRD, eGFR- Chronic Kidney Disease Epidemiology Collaboration (CKD EPI) were calculated.

Results: CysC significantly correlated with SCr and eGFR –MDRD in both T2DM patients and healthy adults but was stronger in the T2DM patients. CysC significantly
correlated with ACR severity categories only in T2DM patients with a significant stepwise increase of CysC according to degree of albuminuria. The T2DM patients (n=61) had higher CysC than the matched controls. Both T2DM patient groups with moderate diabetic nephropathy (n=21) and microalbuminuria (n=22) had higher CysC than the respective matched healthy control groups (p<0.05). Only the ACR categories showed a significant correlation with DR categories (P<0.05). CysC cut off value for the diagnosis of moderate renal impairment was 0.98mg/L (sensitivity of 85.7%, specificity of 82.5%) and for albuminuria (ACR >30mg/g) was 0.96 mg/L (sensitivity of 73.3% and a specificity of 80.6%). Only CysC could differentiate the moderately increased chronic kidney disease (CKD) risk prognosis category from the absent/low CKD risk category (p < 0.05). The reference intervals for the healthy adults for < 50 years of age for male and females are 0.62 – 1.01 mg/L and 0.54 – 0.90 mg/L respectively while for > 50 years of age for males and females are 0.65 – 1.12 mg/L and 0.60 – 1.01 mg/L respectively.

Conclusion: CysC may be used as a reliable renal function marker in T2DM patients with mild to moderate diabetic nephropathy and it is also useful in early detection of poor prognosis in CKD. ACR may be able to predict DR status in T2DM patients. Our study suggests that screening for low GFR with CysC in a low-risk population is probably not worthwhile. In healthy adults, gender based reference intervals for less than 50 year and more than 50 years of age are suggested.
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>i</td>
</tr>
<tr>
<td>List of figures</td>
<td>iv</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>vi</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>x</td>
</tr>
<tr>
<td>Abstract</td>
<td>xii</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1.1 General Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Chronic Kidney Disease (CKD)</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Diabetic nephropathy</td>
<td>2</td>
</tr>
<tr>
<td>1.4 Diabetic retinopathy</td>
<td>3</td>
</tr>
<tr>
<td>1.5 Association between diabetic nephropathy and retinopathy</td>
<td>6</td>
</tr>
<tr>
<td>1.6 Investigations currently used in the assessment of diabetic nephropathy in clinical practice</td>
<td>7</td>
</tr>
<tr>
<td>1.6.1 Glomerular Filtration Rate (GFR)</td>
<td>7</td>
</tr>
<tr>
<td>1.6.2 Hierarchical arrangement of GFR markers</td>
<td>8</td>
</tr>
<tr>
<td>1.6.3 Measured glomerular filtration rate (mGFR)</td>
<td>9</td>
</tr>
<tr>
<td>1.6.4 Endogenous markers of Glomerular Filtration Rate</td>
<td>9</td>
</tr>
<tr>
<td>1.6.4.i Blood urea</td>
<td>9</td>
</tr>
<tr>
<td>1.6.4.ii Serum creatinine</td>
<td>10</td>
</tr>
<tr>
<td>1.6.4.iii Serum creatinine based estimated Glomerular filtration rates</td>
<td>12</td>
</tr>
</tbody>
</table>
1.6.4.iii.a. Cockcroft-Gault equation 13
1.6.4.iii.b. Modification of Diet in Renal Disease study equation 13
1.6.4.iii.c. Chronic Kidney Disease Epidemiology Collaboration Equation 15
1.6.4.iv Twenty four hour urine creatinine clearance 16
1.6.5 Albuminuria 16
1.6.6 Serum cystatin C 19
1.7 Assessment of chronic kidney disease 19
1.8 Justification 24
1.9 Objectives 26

2 LITERATURE REVIEW

2.1 Cystatin C structure and metabolism 27
2.2 Factors affecting serum cystatin C levels 29
2.3 Measurement methods of serum cystatin C 30
2.4 Reference ranges 31
2.5 Serum cystatin C as a marker of GFR 33
2.6 Advantages of serum cystatin C over serum creatinine 33
2.7 Serum creatinine and creatinine based eGFR equations 34
2.8 Comparison of serum cystatin C and serum creatinine 36
2.9 Association between serum cystatin C and albuminuria 44
2.10 Prediction of End stage renal failure by renal function markers 46
2.11 Prediction of cardiovascular risk and mortality by renal function tests 47
2.12 Renal functions and diabetic retinopathy 48
3 MATERIALS AND METHODS

3.1 Chemicals and reagents
3.1.1 Special chemicals and reagents
3.1.2 Water

3.2 Selection of subjects
3.2.1 Selection of cases (T2DM patients)
3.2.2 Selection of controls (healthy adults)

3.3 Data collection
3.3.1 Questionnaire
3.3.2 Summary of the data collected and definitions in the type 2 diabetes patients
3.3.2.i Data collected by interviewing the cases
3.3.2.ii Data collected from clinic and past records
3.3.3 Summary of the data collected and definitions in the apparently healthy subjects
3.3.3.i Data collected by interviewing the controls
3.3.4 Data collected by measurements in both diabetic patients and healthy adults
3.3.5 Height, weight and Body Mass Index
3.3.6 Waist, Hip circumferences and Waist to Hip ratio
3.3.7 Measurement of blood pressure
3.3.8 Diabetic retinopathy assessment

3.4 Collection of blood and urine samples
3.4.1 Collection of blood samples

3.4.2 Collection of urine samples

3.5 Laboratory quantitative analysis

3.5.1 Quantitative analysis of serum cystatin C

3.5.1.i Cystatin C assay procedure

3.5.1.ii Reaction principle

3.5.1.iii Calibration

3.5.1.iv Traceability

3.5.1.v Quality control

3.5.1.vi Detection limit and measuring range

3.5.1.vii Imprecision

3.5.2 Quantitative analysis of serum and urine creatinine

3.5.2.i Creatinine assay procedure

3.5.2.ii Reaction principle

3.5.2.iii Calibration

3.5.2.iv Traceability

3.5.2.v Quality control

3.5.2.v.a Quality control for serum creatinine

3.5.2.v.b Quality control for urine creatinine

3.5.2.vi Detection limit and measuring range

3.5.2.vii Imprecision

3.5.3 Quantitative analysis of urine albumin

3.5.3.i Albumin assay procedure
3.5.3.ii Reaction principle 64
3.5.3.iii Calibration 64
3.5.3.iv Traceability 65
3.5.3.v Quality control 65
3.5.3.vi Detection limit and measuring range 66
3.5.3.vii Imprecision 66

3.6 Calculation of eGFR 66
3.6.1 Calculation of eGFR using serum creatinine based Modified Modification of Diet in Renal Disease study equation 66
3.6.2 Calculation of eGFR using serum creatinine based re-expressed Modification of Diet in Renal Disease study equation 67
3.6.3 Calculation of eGFR using serum creatinine based 2009 CKD-EPI creatinine equation 67

3.7 Calculation of Albumin to Creatinine Ratio 68

3.8 Staging of chronic kidney disease 68

3.9 Data processing and analysis 69

3.10 Ethical Issues 70
3.10.1 Ethical Clearance 70
3.10.2 Consent 70

3.11 Sample size calculation 71

4 RESULTS 72
4.1 Characteristics of study subjects 72
4.2 Associations between serum cystatin C and serum creatinine, albumin to creatinine ratio, and estimated GFR

4.2.1 Association between serum cystatin C and serum creatinine

4.2.2 Association of CysC, SCr, eGFR-MDRD with ACR

4.2.3 Association of CysC, SCr with eGFR-MDRD

4.2.4 Comparison between type 2 diabetic patients with mild renal impairment and moderate renal impairment

4.3 Comparisons of CysC levels in patients with type 2 diabetes and healthy individuals

4.4 Association of diabetic retinopathy with selected renal function tests

4.5 Establishing normal reference range for serum cystatin C in a selected sample of healthy Sri Lankan adults

4.6 Analysis of Receiver Operator Characteristics (ROC) curves for determination of diagnostic accuracy of cystatin C in diabetic nephropathy

4.7 Serum cystatin C in levels in identification of diabetic patients with moderate risk of progression of CKD

5 DISCUSSION

6 CONCLUSION

7 REFERENCES
8 APPENDICES

Appendix I - List of publications and communications
Appendix II - Questionnaires- English and Sinhala
Appendix III - Consent Forms – English and Sinhala
Appendix IV - Information Sheets – English and Sinhala
Appendix V - Ethics Review Committee letters
Appendix VI - Lever-Jenning charts