ECONOMIC VALUATION OF VILLAGE TANK SYSTEMS OF HAMBANTOTA DISTRICT: TOWARDS DEVELOPMENT OF AN INCENTIVE MECHANISM FOR THEIR CONTINUITY

BY

ELGIRIYAGE BUWANI IMALI DAYANANDA

Thesis submitted to the University of Sri Jayawardenepura for the award of the Degree of Master of Philosophy in Environmental Economics

DECLARATION

"The work described in this thesis was carried out by me under the supervision of Dr. U.A.D.P. Gunawardene of Department of Forestry and Environmental Sciences, University of Sri Jayawardenepura and a report on this has not been submitted in whole or in part to any university or any other institution for another Degree/Diploma".

Signature:

Botto en janand

Name: Elgiriyage Buwani Imali Dayananda

Date: <u>20.04.2007</u>

SUPERVISOR'S CERTIFICATION

"I certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the University for the purpose of evaluation".

NOOP~7

Dr. U.A.D.P.Gunawardene,

Senior Lecturer,

Department of Forestry and Environmental Sciences,

Faculty of Applied Sciences,

University of Sri Jayawardenepura.

Date: 20, 04. 2007

CHAPTER 03: ECONOMICS OF TANK CONSERVATION

3.1	Introduction	37
3.2	Economics of renewable resources	37
3.3	The concept of sustainable development	39
3.4	Concept of social capital	46
3.5	Poverty and degradation of natural resources	47
3.6	Economics of water in tank systems	53
3.7	Market failure in environmental resources	59
3.8	The concept of economic value	70
3.9	Environmental Economic valuation	80
3.10	Decision making tool- Cost benefit analysis	85
3.11	Economic Incentives in natural resource management	86
3.12	Concluding remarks	94
CHA	PTER 04: RESEARCH METHODOLOGY	
4.1.1	Introduction	96
4.2	Study area	96
4.3	Sampling Procedure	105
4.4	Methodology of valuing direct consumptive uses	108
4.5	Methodology of valuing recreational benefits	117
4.6	Methodology of identifying indirect use values of the tank systems	129
4.7	Methodology of estimating option values of tank system	129
4.8	Estimating total direct use value	130
4.8	Methodology of identifying reasons for tank degradation	132

4.10	Methodology of identifying suitable incentive mechanism for the	
	sustainable use of village tank systems	133
4.11	Methodology of cost-benefit analysis	133
4.12	Concluding remarks	135
CHAI	TER 05: VALUATION OF DIRECT CONSUMPTIVE USES OF	VILLAGE
	TANK SYSTEMS	
5.1	Introduction	136
5.2	Agricultural crops of village tank systems	137
5.3	Livestock in the village tank systems	145
5.4	Domestic uses of tank water	148
5.5	Fishery in the village tank systems	149
5.6	Fuel wood of tank ecosystems	152
5.7	Industrial use of village tank ecosystem	152
5.8	Economic value of lotus roots and flowers	154
5.9	Total direct consumptive use value of village tanks	159
5.10	Concluding remarks	156
CHA	PTER 06: VALUATION OF RECREATIONAL BENEFITS OF 7	THE
	VILLAGE TANK SYSTEMS	
6.1	Introduction	157
6.2	Socio-economic characteristics of the sample	157
6.3	WTP for recreational benefits	162
6.4	Variation in WTP with socio economic situation	167
6.5	Validity testing	169

iii

6.6	Reliability		171
6.7	Analysis of bia	ises	172
6.8	Aggregation		173
6.9	Concluding ren	marks	174
CHAP	TER 07:	OTHER BENEFITS OF TANK SYSTEMS AND COMPA	RISONS
		OF TOTAL TANK BENEFITS WITH TANK REHABILI	TATION
		COST	
7.1	Introduction		175
7.2	Groundwater	recharge	176
7.3	Biodiversity		177
7.4	Carbon storag	je	181
7.5	Comparison o	of tank benefits with tank rehabilitation cost	182
7.6	Discussion		183
7.7	Concluding re	emarks	185
CHA	PTER 08:	FACTORS AFFECTING TANK DEGRADATION AND)
		ABANDONMENT	
8.1	Introduction		186
8.2	Market failur	e and resource degradation	188
8.3	Institutional	failure	191
8.4	Policy Failur	e	195
8.5	Poverty and	resource degradation	199
8.6	Physical syst	tem deterioration	202

iv

8.7	Climatic facto	rs		T	203
8.8	Population gro	owth			204
8.9	Concluding re	marks			205
CHAF	PTER 09:	INTERVENTIONS FOR CON	ITINUITY OF	VILLAGE T	ANKS
9.1	Introduction			8	206
9.2	Interventions	to solve market failure			207
9.3	Economic inc	entives at community level			208
9.4	Economic Inc	entives at National Level			218
9.5	Economic inc	entives at International level			225
9.6	Concluding re	emarks			226
CHA	PTER 10:	CONCLUSIONS, RECOMM	ENDATIONS .	AND FURTH	IER
		RESEARCH			228
REFERENCES 2			239		
APPI	ENDIX I				

APPENDIX II

LIST OF TABLES

1

Table	1.1	Extent of paddy lands cultivated under different irrigation systems	3
Table	2.1	Size class distribution of village tanks in four districts	15
Table	2.2	Distribution of operational village tanks in four districts	17
Table	2.3	Organizational changes in management of village tanks	28
Table	3.1	Summary of valuation studies	59
Table	3.2	Definition of property regimes	67
Table	3.3	Monetary measures for the price change effects	79
Table	3.4	Total economic value in the village tank	82
Table	4.1	River basin details of Hambantota district	99
Table	4.2	Monsoon and inter-monsoon seasons and their periods	101
Table	4.3	Paddy extent sown under different irrigation systems in	
		Hambantota district	104
Table	4.4	Number of minor irrigation tanks in Hambantota district	105
Table	4.5	District summary of operating village tanks	106
Table	4.6	Selected 10 tanks for the study	107
Table	4.7	Methods of eliciting WTP values from respondents	120
Table	4.8	Main CVM biases and ways to avid such biases	123
Table	4.9	Economic valuation techniques used in water resource valuation	128
Table	5.1	Economic return per ha of irrigated paddy for tanks in cascades	138
Table	5.2	Economic return per ha of irrigated paddy for tanks in isolation	139

Table	5.3	Economic return for Banana production	141
Table	5.4	Economic return for coconut cultivation	142
Table	5.5	Economic return for vegetable cultivation in tanks in isolation	143
Table	5.6	Economic return for vegetable cultivation in tanks in cascades	144
Table	5.7	Economic return for providing water for livestock	146
Table	5.8	Economic return for providing fodder for livestock	147
Table	5.9	Economic return for using water for bathing and washing	148
Table	5.10	Economic return for fishing in isolated tanks	150
Table	5.11	Economic return for fishing in cascade tanks	150
Table	5.12	Economic return for fuel wood	152
Table	5.13	Economic return for brick production	153
Table	5.14	Economic return for lotus roots	154
Table	5.15	The value of direct consumptive uses	155
Table	6.1	Age statistics of respondents	158
Table	6.2	Educational status of the respondents	159
Table	6.3.	Types of employment	160
Table	6.4	Income Statistics of respondents	161
Table	6.5	Income distribution of the households	161
Table	6.6	Protest and refusal statistics of the samples	163
Table	6.7	Descriptive Statistics of WTP	163
Table	6.8	Total and mean WTP in two tank strata	164
Table	6.9	Test Statistics of Mann-Whitney test	165
Table	6.10	Model Summary of regression analysis	168

Table	6.11	Coefficients of regression equation	168
Table	6.12	Test Statistics of Mann-Whitney test	174
Table	7.1	Correlation between depth and distance	176
Table	7.2	Perennial Trees and medicinal plants in tank catchment area	178
Table	7.3	Fish and reptiles in tank ecosystems	179
Table	7.4	Birds in tank ecosystem	180
Table	7.5	Carbon value of studied tank catchment area	182
Table	7.6	Cost benefit assessment of alternative tank management scenarios	183
Table	8.1	Agric. Income and level of social capital	194
Table	8.2	Irrigation and non-irrigation economic values of village tanks	195
Table	9.1	Summary of potential local interventions	224

LIST OF FIGURES

Figure 1.1	Main agro-climatic zones of Sri Lanka	4
Figure 2.1	Cross sectional presentation of a typical village tank	13
Figure 2.2	Small tank cascade system	14
Figure 2.3	Island wide distribution of village tanks	16
Figure 3.1	Kuznet curve	51
Figure 3.2	Effects of negative externality on allocative efficiency	62
Figure 3.3	Effect of positive externality	63
Figure 3.4	Subsidy to producer of positive externality	65
Figure 3.5	Consumer surplus and producer surplus	73
Figure 3.6	(a) The compensating variation of a price fall;	76
	(b) Hicksian and Marshallian demands	76
Figure 3.7	Compensating variation and equivalent variation	78
Figure 3.8	Pigovian tax solution to pollution externality	93
Figure 4.1	Location of Hambantota district	97
Figure 4.2	Distribution of rainfall and climatic zones	100
Figure 4.3	Paddy production ('000 MT) by season in Hambantota District	102
Figure 4.4	Perennial crops grown in Hambantota district	103
Figure 4.5	Livestock in the Hambantota district	103
Figure 4.6	Summary of valuation methodologies	131

Figure 5.1	Livestock in the tank site	145
Figure 5.2	Fishing at village tank	149
Figure 8.1	Summary of reasons for tank degradation	187
Figure 9.1	Different levels of tank conservation effort	207

LIST OF ABBREVIATIONS

Agrarian Research and Training Institute ARTI Catchment Area of Cascade CAA Total Command Area COA **Compensation Variation** CV Consumer Surplus CS Contingent Valuation CV Contingent Valuation Method CVM Department of Agrarian Services DAS Department of Agrarian Development DAD Department of Census and Statistics DCS **Divisional** Secretariat DS Equivalent Variation EV Food and Agriculture Organization of United Nations FAO Farmer Organization FO Farmer Company FC Grama Niladri GN Human Development Index HDI Human Poverty Index HPI Irrigation Department ID Irrigation Management Division IMD International Irrigation Management Institute IIMI

IUCN	World Conservation Union
INMAS	Integrated Management of Agricultural Schemes
KOISP	Kirindi Oya Irrigation Settlement Project
MANIS	Management of Irrigation Schemes
MASL	Mahaweli Authority of Sri Lanka
MCS	Marshalian Consumer Surplus
MT	Metric Tons
NIRP	National Irrigation Rehabilitation Project
0 & M	Operation and Maintenance
PMC	Private Marginal Cost
PMB	Private Marginal Benefit
SMC	Social Marginal Cost
SMB	Social Marginal Benefit
ТА	Technical Assistant
TEV	Total Economic Value
TVP	Total Value Product
TECO	Territorial Civil Engineering Organization
UNDP	United Nations Development Programme
VIRP	Village Irrigation Rehabilitation Project
VMP	Value of Marginal Product
WTP	Willingness to Pay
WTA	Willingness to Accept

xii

ACKNOWLEDGEMENT

First and foremost I would like to thank sincerely my supervisor, Dr. U.A.D.P.Gunawardene, Senior Lecturer of Department of Forestry and Environmental Sciences, University of Sri Jayawardenepura, Sri Lanka, for her invaluable intellectual advice, enthusiastic interest and endless encouragement. It has been a privilege to have had her as my supervisor.

I would particularly like to acknowledge the kind assistance that I received from, academic and non-academic staff of the Department of Forestry and Environmental Sciences, University of Sri Jayawardenepura. Further, I wish to acknowledge the kind cooperation I received from the administrative staff of the Faculty of Graduate Studies, University of Sri Jayawardenepura.

I would like to thank Prof. Mangala de Zoysa, Department of Agricultural Economics, Faculty of Agriculture, University of Ruhuna, for his great helpfulness and encouragement rendered to me which in turn took me towards the completion of this research.

I am deeply indebted to Prof. Mahinda Wijeratne for his kind encouragement and valuable guidance. Further, I wish to express my sincere thanks to Dr. Oscar Amarasinghe and Dr. L.M. Abeywickrama of Department of Agricultural Economics, University of Ruhna, for their support during the research. A great debt is also owed to other academic and non-

academic staff members of the Department of Agricultural Economics, Faculty of Agriculture, University of Ruhuna for their kind support extended during my research period.

I am also grateful to my colleagues and relatives who helped me in the field survey. Furthermore, the farmers and the officers who spent their valuable time by answering my lengthy questions are also acknowledged with gratitude.

Dedicated

То

My Loving Parents & Teachers

Economic Valuation of Village Tank Systems of Hambantota District: Towards Development of an Incentive Mechanism for their Continuity

E.B.I. Dayananda

ABSTRACT

Village tanks of Sri Lanka play an important role in socio-economic development of the country. There are thousands of farm families who receive multiple benefits from these tank systems. However, being a public property, some of the goods and services provided by a tank system hardly receive any value as they are not traded in markets, and are not closely related to any marketed goods. Therefore, this study tries to value the direct benefits of these man made assets and to develop an incentive mechanism for the sustainable use of these resources. The Total Economic Value (TEV) concept was the basis for the valuation of tank benefits.

To measure the direct use values, residual imputation approach, market price approach, opportunity cost method and contingent valuation method were used. 175 households who live adjacent to the selected 10 village tanks of Hambantota district were interviewed using a pre-tested questionnaire. Further, officers of relevant government institutes of the district and officials of the farmer organizations were also interviewed. Field survey was done in the *maha* season of 2005/2006.

The total economic value of direct uses of tank was estimated as Rs. 65,840 in the isolated tanks and Rs. 80,155 in cascade tanks per household per year. The results of contingent valuation method indicated that respondents are willing to pay 1% of their average annual income for the recreational benefits of the tank. Furthermore, it is interesting to find out that, the non-irrigation value of a village tank is greater than the irrigation value. In the case of cascade tanks that is 81% and in the case of isolated tanks that is 86%. The estimated tank benefits were then compared with tank rehabilitation cost in order to derive relevant policy implications. Results of the cost-benefit analysis indicated that rehabilitation of village tanks is economically feasible if multiple benefits are generated.

Among the ecosystem functions supported by village tanks, ground water recharge was investigated in the study. There is a correlation between distance from the tank to well and the depth to the water level of the tank. Furthermore, tank ecosystems are habitats for four threatened fauna species. Furthermore, the forest area of a tank catchment is a carbon store worth Rs. 3.3 million.

Market failure, policy failure and institutional failure are the main reasons behind tank degradation while poverty, climatic factors and growth of population are also contributing to the deterioration of the tank systems. The study concludes that the best interventions for continuity of tanks be the; better use of social capital, the empowerment of farmer organizations through a catalyst, use of an integrated approach in tank management and granting subsidies to paddy farming.